Joint Center for Satellite Data Assimilation

CRTM: v2.0 User Guide

November 21, 2012; rev22704

Change History

Date Author | Change

2009-01-30 P.van Delst Initial release.

2009-02-03 P.van Delst Updated chapter 2 with descriptions of the example
code and coeflicient tarballs. Added explanation of
layering convention in chapter 4.

2010-03-12 P.van Delst Updated for v2.0.

2010-05-18 P.van Delst Updated for v2.0.1.

2010-06-01 P.van Delst Updated for v2.0.2.

2011-09-23 P.van Delst Updated for v2.0.4.

2011-12-05 P.van Delst Updated for v2.0.5.

2012-11-21 P.van Delst Updated for v2.0.6.

Contents

What’s New in v2.0

New Science

Interface Changes

What’s New in v2.0.1

Bug Fixes
Refactor for Compiler Defects

Reorganistion of Test/Example Programs

What’s New in v2.0.2

Bug Fixes

Addition of Test/Example Programs

What’s New in v2.0.4

Update of sensor coefficient files

Bug Fixes

What’s New in v2.0.5

What’s New in v2.0.6

1 Introduction

1.1

1.2

Conventions
1.1.1 Naming of Structure Types and Instances of Structures
1.1.2 Naming of Definition Modules
1.1.3 Naming of Application Modules
1.1.4 Naming of I/O Modules
CompOnents o v i e e e e e e
1.2.1 Atmospheric Optics L
1.2.2 Surface Optics o

ix

X

xi
xi
xi

xii

xiii
xiii
xiii

xiv

Xiv

Xiv

XV

xvi

Xvi

xvi

W NN ===

1.2.3 Radiative Transfer Solutiono

1.3 Models
1.4 Design

Framework

2 How to obtain the CRTM

2.1 CRTM

ftp download site

2.2 Coefficient Data

3 How to build the CRTM library

3.1 Build Files
3.2 Predefined Configuration Files

3.3 Compilation Environment Setup

3.4 Building the library
3.5 Testing the library
3.6 Installing the library
37 CleanUp
3.8 Linking to the library

4 How to use the CRTM library

4.1 Step by Step Guide e
4.1.1 Step 1: Access the CRTM module
4.1.2 Step 2: Declare the CRTM structures
4.1.3 Step 3: Initialise the CRTM
4.1.4 Step 4: Allocate the CRTM structures
4.1.5 Step 5: Fill the CRTM input structures with data
4.1.6 Step 6: Call the required CRTM function
4.1.7 Step 7: Destroy the CRTM and cleanup,

4.2 Interface Descriptions e
4.2.1 CRTM_Init interface e
4.2.2 CRTM Forward interface e
4.2.3 CRTM_Tangent_Linear interface
4.2.4 CRIM_Adjoint interface
4.2.5 CRTM K Matrix interface e
4.2.6 CRTMDestroy interface

Bibliography

ii

(=)

© © © o o

11
11
11

12
12
12
12
13
14
15
16
17
17
17
20
22
24
26
28

30

A Structure and procedure interface definitions 31

Al

A2

A3

A4

ChannelInfo Structure e 32
A.1.1 CRTM_ChannelInfo_Associated interface 32
A.1.2 CRTM_ChannelInfo DefineVersiom interface 33
A.1.3 CRTM_ChannellInfo Destroy interface 33
A.1.4 CRTM_ChannellInfo_Inspect interface 33
A.1.5 CRTM_ChannelInfo.n Channels interface. 34
Atmosphere Structure 35
A.2.1 CRTM_Atmosphere AddLayerCopy interface 37
A.2.2 CRTM_Atmosphere_Associated interface, 37
A.2.3 CRTM_Atmosphere_Compare interface 38
A.2.4 CRTM_Atmosphere Create interface, 38
A.2.5 CRTM_Atmosphere DefineVersion interface 40
A.2.6 CRTM_Atmosphere Destroy interface 40
A.2.7 CRTM_Atmosphere Inspect interface 40
A.2.8 CRTM_Atmosphere_IsValid interface 41
A.2.9 CRTM_Atmosphere_Zero interface 41
A.2.10 CRTM_Atmosphere_I0Version interface 42
A.2.11 CRTM_Atmosphere_InquireFile interface 42
A.2.12 CRTM_Atmosphere ReadFile interface 43
A.2.13 CRTM_Atmosphere WriteFile interface 45
Cloud Structure o . o e e 47
A.3.1 CRTM_Cloud_AddLayerCopy interface 48
A.3.2 CRTM_Cloud Associated interface, 48
A.3.3 CRTM_Cloud Compare interface. it 49
A.3.4 CRTM_Cloud Create interface 49
A.3.5 CRTM_Cloud DefineVersiom interface 50
A.3.6 CRTM_Cloud Destroy interface. i 50
A.3.7 CRTM_Cloud_Imspect interface. 51
A.3.8 CRTM_Cloud_IsValidinterface. 51
A.3.9 CRTM.Cloud Zero interface. i 52
A.3.10 CRTM_Cloud_IOVersion interface, 52
A.3.11 CRTM_Cloud_InquireFile interface 53
A.3.12 CRTM_Cloud ReadFile interface i 54
A.3.13 CRTM_Cloud WriteFile interface 95
Aerosol Structure L 57
A.4.1 CRTM_Aerosol_AddLayerCopy interface o8
A.4.2 CRTM_Aerosol _Associated interface 58
A.4.3 CRTM_Aerosol_Compare interface, 59
A.4.4 CRTM_Aerosol Create interface 59

iii

A5

A6

A7

A.4.5 CRTM_Aerosol DefineVersion interface 60

A.4.6 CRTM_Aerosol Destroy interface 60
A.47 CRTM_Aerosol_Inspect interface 61
A.4.8 CRTM_Aerosol_IsValid interface 61
A.49 CRTM_Aerosol Zero interface 62
A.4.10 CRTM_Aerosol I0Version interface 62
A.4.11 CRTM_Aerosol_InquireFile interface 63
A.4.12 CRTM_Aerosol ReadFile interface 64
A.4.13 CRTM_Aerosol WriteFile interface 65
Surface Structure L. e e 67
A.5.1 CRTM_Surface_Associated interface 72
A.5.2 CRTM_Surface Compare interface, 72
A.5.3 CRTM_Surface_CoverageType interface 73
A.5.4 CRTM Surface Create interface, 73
A.5.5 CRTM_Surface DefineVersion interface 74
A.5.6 CRTIM_Surface Destroy interface 74
A.5.7 CRTM_Surface_Inspect interface 75
A.5.8 CRTM_Surface_IsCoverageValid interface (0]
A.5.9 CRTM Surface IsValid interface 76
A.5.10 CRTM_Surface_Zero interface L 7
A.5.11 CRTM_Surface_I0Version interface, 7
A.5.12 CRTM_Surface_InquireFile interface 7
A.5.13 CRTM_Surface ReadFile interface 78
A.5.14 CRTM Surface WriteFile interface 80
SensorData Structure L e 82
A.6.1 CRTM_SensorData_Associated interface 83
A.6.2 CRTM_SemnsorData Compare interface 83
A.6.3 CRTM_SensorData Create interface 84
A.6.4 CRTM_SensorData DefineVersion interface 84
A.6.5 CRTM_SemsorData Destroy interface 85
A.6.6 CRTM_SensorData Inspect interface 85
A.6.7 CRTM_SensorData_IsValid interface 86
A.6.8 CRTM_SensorData_Zero interface 86
A.6.9 CRTM_SensorData_IOVersion interface 87
A.6.10 CRTM_SensorData_InquireFile interface 87
A.6.11 CRTM_SensorData ReadFile interface 88
A.6.12 CRTM_SensorData WriteFile interface 89
Geometry Structure e e 91
A.7.1 CRTM_Geometry DefineVersion interface 96
A.7.2 CRTIM_Geometry Destroy interface, 96

iv

A.7.3 CRTM_Geometry GetValue interface 96

A.7.4 CRTM_Geometry_Imspect interface 99
A.7.5 CRTM_Geometry_IsValidinterface 99
A.7.6 CRTM_Geometry_SetValue interface 100
A.77 CRTM_Geometry_IOVersiom interface 102
A.7.8 CRTIM Geometry InquireFile interface 103
A.7.9 CRIM_Geometry ReadFile interface 103
A.7.10 CRTM_Geometry WriteFile interface 104

A.8 RTSolution Structure 106
A.8.1 CRTM_RTSolution_Associated interface 108
A.8.2 CRTM_RTSolution _Compare interface, 108
A.8.3 CRTM_RTSolution Create interface 109
A.8.4 CRTM_RTSolution DefineVersion interface 109
A.8.5 CRTM_RTSolution Destroy interface 110
A.8.6 CRTM_RTSolution Imnspect interface 110
A.8.7 CRTMRTSolution IOVersiom interface 111
A.8.8 CRTMRTSolution InquireFile interface 111
A.8.9 CRTM_RTSolution ReadFile interface 112
A.8.10 CRTM_RTSolution WriteFile interface 113

A9 Optioms Structure e 115
A.9.1 CRTM_Options_Associated interface 117
A.9.2 CRTM.Optioms_Create interface 117
A.9.3 CRTM_Options_DefineVersion interface 118
A.9.4 CRTM Optioms Destroy interface 118
A.9.5 CRTM.Optioms_Inspect interface, 119
A.9.6 CRTM.Optiomns_IsValid interface 119

A 10 SSU_Input SEructure o v v vttt e e e 121
A.10.1 SSU_Input_CellPressurelsSet interface 121
A.10.2 SSU_Input_DefineVersiom interface 122
A.10.3 SSU_Input_GetValue interface. 122
A.10.4 SSU_Input_Inspect interface L o 123
A.10.5 SSU_Input_IsValid interface 124
A.10.6 SSU_Input_SetValue interface. L 124
A11 Zeeman _Input Structure ottt e e 126
A.11.1 Zeeman Input DefineVersion interface 126
A.11.2 Zeeman Input_GetValue interface 127
A.11.3 Zeeman Input_Inspect interface o 128
A.11.4 Zeeman Input_IsValid interface 128
A.11.5 Zeeman Input_SetValue interface L 129

B Valid Sensor Identifiers 131

C Migration Path from REL-1.2.x to REL-2.0.x 137

C.1 CRTM Initialization 137
C.2 CRTM Structure Life Cycle Changes i it 137
C.2.1 Atmosphere e 137
C.2.2 Surface e 138
C.2.3 Options o o e 139
C.2.4 RTSolution 140
C.3 CRTM Structure Replacement 0 e e e e 141

vi

List of Figures

1.1 Flowchart of the CRTM Forward and K-Matrix models. 5
2.1 The CRTM coefficients directory structure L 7
A.1 CRTM_Channellnfo_type structure definition. 32
A.2 CRTM_Atmosphere_type structure definition. 35
A.3 CRTM_Cloud_type structure definition. 47
A.4 CRTM_Aerosol_type structure definition. L 57
A5 CRTM_Surface_type structure definition. 67
A.6 CRTM_SensorData_type structure definition. 82
A7 CRTM_Geometry_type structure definition. 91
A.8 Definition of Geometry sensor scan angle component. 93
A.9 Definition of Geometry sensor zenith angle component. 00 93
A.10 Definition of Geometry sensor azimuth angle component. 94
A.11 Definition of Geometry source zenith angle component. 94
A.12 Definition of Geometry source azimuth angle component. 95
A.13 CRTM_RTSolution_type structure definition. 106
A.14 CRTM_Options_type structure definition. 115
A.15 SSU_Input_type structure definition. Lo 121
A.16 Zeeman_Input_type structure definition. L 126

vii

List of Tables

3.1 Supplied configuration files for the CRTM library and test/example program build. 8

A.1 CRTM Atmosphere structure valid Climatology definitions. The same set as defined for LBLRTM

Isused. ... L 36
A.2 CRTM Atmosphere structure valid Absorber_ID definitions. The same molecule set as defined for

HITRAN dsused. o e e s e e 36
A.3 CRTM Atmosphere structure valid Absorber Units definitions. The same set as defined for

LBLRTM is used. o i s e e 36
A.4 CRTM Cloud structure valid Type definitions. 47
A.5 CRTM Aerosol structure valid Type definitions and effective radii. SSAM = Sea Salt Accumula-

tion Mode, SSCM = Sea Salt Coarse Mode. 57
A.6 CRTM Surface structure component description. 68
A7 CRTM Surface structure default values. o 69
A.8 CRTM Surface structure valid Land_Type definitions. 70
A9 CRTM Surface structure valid Water Type definitions. 70
A.10 CRTM Surface structure valid Snow_Type definitions. 70
A.11 CRTM Surface structure valid Ice_Type definitions. 71
A.12 CRTM SensorData structure component description. 82
A.13 CRTM Geometry structure component description. 92
A.14 CRTM RTSolution structure component description 107
A.15 CRTM 0Options structure component description 116
A.16 CRTM SSU_Input structure component description 121
A.17 CRTM Zeeman_Input structure component description 126
B.1 CRTM sensor identifiers and the availability of ODAS or ODPS TauCoeff files 132

viii

What's New in v2.0

New Science

Multiple transmittance algorithms There are now two transmittance models available for use in the CRTM:
ODAS (Optical Depth in Absorber Space), which is equivalent to the previous CompactOPTRAN algo-
rithm; and ODPS (Optical Depth in Pressure Space) which is similar to the RTTOV-type of transmittance
algorithm, except here OPTRAN is used for water vapor line absorption.

The algorithm is selectable by the user via the transmittance coefficient (TauCoeff) data file used to
initialise the CRTM. This method, rather than a switch argument in the CRTM_Init () function, was chosen
to allow users to “mix-and-match” transmittance algorithms for different sensors in the same initialisation
call.

SSU-specific transmittance model Similar to the multiple transmittance algorithm approach, a separate
algorithm just for the SSU instrument has been constructed. The algorithm is based on the ODAS approach,
but with elements to account for the time-dependence of the SSU CO4 cell pressures.

Zeeman-splitting transmittance model for SSMIS upper-level channels A separate algorithm is avail-
able to account for the change in absorption at very low pressures due to the Zeeman-splitting of absorption
lines. Currently this algorithm has only been applied to the affected channels in the SSMIS instrument,
19-22.

Visible sensor capability The CRTM now supports radiative transfer for visible instruments/channels. The
treatment of visible channels was handled in the CRTM framework by considering them separate instru-
ments. The sensor identifier for these instruments/channels are differentiated from their infrared counter-
parts by a “v.” prefix. For example, while modis_aqua is the sensor identifier for the infrared channels,
v.modis_aqua identifies the visible channels.

Inclusion of Matrix Operator Method (MOM) in radiaitve transfer To handle visible wavelength ra-
diative transfer in the prescence of aerosols, the Advanced Doubling-Adding (ADA) algorithm was adapted
to use the MOM technique [Liu and Ruprecht, 1996].

Inclusion of additional infrared sea surface emissivity model Files containing the emissivity data (EmisCoeff)
for the Nalli et al. [2008a] model are provided. Previously, only the EmisCoeff files for the Wu and Smith
[1997] model were provided. Users can now select between the Nalli et al. [2008a] or Wu and Smith [1997]
models by specifying the requisite filename in the call to CRTM_Init ().

Surface BRDF for solar-affected shortwave IR channels A bi-directional reflectance distribution func-
tion (BRDF) has been added to account for reflected solar in affected shortware infrared channels [Breon,
1993].

Reflectivity for downwelling infrared over water The reflectivity for downwelling infrared radiation over
water surface has been changed from Lambertian to specular.

ix

Aerosol type changes To account for changes in the handling of GOCART [Chin et al., 2002] aerosol model
output, additional sea salt coarse modes were added to the list of allowed aerosol types. Also, the separate
dry and wet types for organic and black carbon aerosols were combined, with a relatvie humidity of 0%
used to indicate the previous “dry” aerosol type. See table A.5 for the new list of accepted aerosol types.

Interface Changes

CRTM Initialisation function The changes to the CRTM_Init () interface were relatively minor but do require
calling codes to be modified:

e The Sensor_Id argument is now mandatory. This argument is used to construct the sensor-specific
SpcCoeff and TauCoeff filename and in the past was optional to allow for “generic” filenames. This
is no longer allowed and generic SpcCoeff and TauCoeff files are no longer used.

e The loading of the CloudCoeff and AerosolCoeff datafiles containing the optical properties of
cloud and aerosol particulates is no longer mandatory. For cloud-free CRTM runs, the load of
the CloudCoeff and AerosolCoeff datafiles can be disabled via the optional Load_CloudCoeff and
Load_AerosolCoeff arguments which are logical switches (true or false).

User accessible structures The structures are defined as those that are used in the argument lists of the
main CRTM functions (e.g. initialisation; the forward, tangent-linear, adjoint, and K-matrix models; and
destruction). Changes were made to both the structure definitions and their procedures. To mitigate
the possibility of memory leaks, the definitions of array members of structures have had their POINTER
attribute replaced with ALLOCATABLE. This was a first step in preparation for use of Fortran2003 Object
Oriented features in the CRTM (once Fortran2003 compiler become widely available), where the derived
type structure definitions will be reclassified as objects and their procedures will be type-bound. To
delineate this change from previous versions of CRTM the interfaces of the derived type procedures have
been altered by:

e changing the procedure names to use the convention CRTM_object_action where an object can be any of
the user accessible CRTM derived types (e.g. CRTM_Atmosphere_type, CRTM_RTSolution_type etc),
and the action can be those defined operations for the structure (e.g. Create, Destroy, Inspect,
etc).

e making the first dummy argument of the definition module procedures the derived type itself. This
will eventually allow the procedures to be called via an instance of the derived type'?

All of the current derived type definitions and their associated procedures and interfaces are shown in
appendix A.

GeometryInfo to Geometry structure name change Previously, the GeometryInfo structure held both the
user input to the CRTM as well as the internally computed geometry data. To separate these two sets of
quantities, the name of the geometry information structure that is passed into the CRTM functions was
changed from CRTM_GeometryInfo_type to CRTM_Geometry_type. This means that all of the user input
structures are now strictly INTENT (IN) arguments.

Options structure specific changes The additional changes made to the CRTM_Options_type definition:

e all usage on/off switches have been changed from integers (0/1) to logicals (true/false),
e a logical switch to control input checking, Check_Input, has been added.

e structure components for SSU-specific and Zeeman model input have been added.

To migrate from the CRTM v1.2.x calling structures to those implemented in v2.0.x, see Appendix C, “Migration
Path from REL-1.2 to REL-2.0.”

Interested readers can investigate the PASS attribute that can be used in the PROCEDURE statement within derived type definitions
in Fortran2003.

2The I/0O functions do not yet follow this convention, since they are considered secondary to the definition module procedures
used to manipulate the derived types.

What's New in v2.0.1

The v2.0.1 update to the CRTM was done to

e Fix defects of varying severity
e Refactor some modules to work around compiler bugs

e Reorganise the testing/example program.

Bug Fixes

Replacing CRTM_Atmosphere_IsValid WARNING message for missing ozone with FAILURE The CRTM con-
tains two different transmittance model algorithm: the Optical Depth in Absorber Space (ODAS) algorithm
and the Optical Depth in Pressure Space (ODPS) algorithm. The ODPS algorithm was constructed to
handle “missing” profiles of major trace gas absorbers (e.g. ozone). The ODAS algorithm, however, cannot
yet handle a missing ozone profile. As such, we have switched back to missing ozone being a FAILURE error,
regardless of whether or not the ODAS or ODPS transmittance algorithm is being used. See ticket 1503.

Allowed for user profile top level pressures to be less than 0.005hPa in the ODAS algorithm. This
corrected a bug that generated negative absorber amounts for the top layer when a user input a profile
where the top level pressure is less than 0.005hPa. See ticket 151.

Fixed test of SensorData%Tb component The previous test (called within the CRTM_Surface_IsValid pro-
cedure) caused a FAILURE when any of the supplied brightness temperatures were less than zero. This test
has been changed to fail only when all of the input brightness temperatures are less than zero to allow
channel subsets of data to be passed. See ticket 110.

Corrected error mesage in CRTM_Atmosphere_IsValid function. The error message for invalid input ab-
sorber units was corrected. See ticket 141.

Coefficient load message suppression in the CRTM_Init function was not occurring correctly This prob-
lem was traced to a logic error in several of the coefficient load procedures when the optional MPI process
identifier arguments were passed in. The logic has been corrected in the affected load procedures. See
ticket 143.

Refactor for Compiler Defects

Memory leak in CRTM_IRSSEM module fixed This was a bug caused by apparent compiler bugs (in more
than one compiler) where declaring the internals of a local (i.e. not PUBLIC) structure as PRIVATE caused
a memory leak. Removal of the internal PRIVATE statement solved the problem. See ticket 144.

3The ticket references and links are included to allow CRTM developers to easily navigate to the CRTM Source Code Management
system from this document

xi

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/150
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/151
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/110
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/141
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/143
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/144

Modification of Type Kinds module to allow for Intel ifort compilation This work around was neces-
sary due to an ifort v11.1 compiler bug that surfaced due to the CRTM build switches for this compiler
promote compiler warnings to errors. Rather than require users to modify their compilation setup to avoid
this error, the Type_Kinds module was modified to avoind it entirely. See ticket 112.

Modification of CRTM_Atmosphere_AddLayerCopy procedure to allow for PGI pgf95 compilation The REL-
2.0 version of the CRTM_Atmosphere_AddLayerCopy procedure was identified as a problem for the PGI pgf95
v10.2-1 compiler. A bug report was submitted to PGI Support and filed as TPR 16814. The bug is fixed
in the v10.4 release of the pgf95 compiler, which does not have a problem with the original CRTM code.

See ticket 114.

Reorganistion of Test/Example Programs

This update is probably the biggest change in REL-2.0.1. The CRTM tarball structure was updated to include
the test /example codes — as opposed to supplying a separate tarball just for the example programs. The reasoning
here was to establish the typical “make, make test” procedures for building packages, but be aware that the
setup is still rather unsophisticated; we are still investigating ways to more easily configure the CRTM library
and test/example programs (e.g. autoconf).

For a full description of the necessary steps to build the CRTM library and test/example programs, refer to the
README file supplied with the CRTM release tarball.

xii

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/112
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/114
http://www.gnu.org/software/autoconf/

What's New in v2.0.2

The v2.0.2 update to the CRTM was done to

e Fix two critical defects: one introduced in v2.0; another in the v2.0.1 update.

e Add additional tests.

Bug Fixes

Fix for specular reflection of IR sensors over water In v2.0, the reflectance behaviour for IR sensors over
water was changed from Lambertian to specular. The problem with the update is due to the design
of how sub-FOV surface differences are handled in the CRTM. Currently there is no way to handle a
mixed land/water FOV where land reflectivity is assumed Lambertian and water reflectivity specular. The
reflectivity behaviour ended up being that associated with the surface type having the largest FOV fraction.
The temporary fix applied is that all IR sensor reflectivities are now treated as specular. See ticket 164.

Fix for invalid maximum number of azimuth angles for visible sensors To speed up visible sensor cal-
culations in v2.0.1, the maximum number of azimuth angles used was switched from a fixed maximum to
a dynamic one based on the number of Legendre terms required to properly simulate molecular scattering.
However, the maximum number of azimuth angle assignment was being performed prior to the minimum
acceptable value being set. This lead to an invalid value being specified for the number of azimuth angles
in some cases. See ticket 165.

Addition of Test/Example Programs

An additional forward model test, Example5_ClearSky, was introduced to test the bug fixes mentioned above.
All test comparison output files have been updated accordingly.

xiii

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/164
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/165

What's New in v2.0.4

The v2.0.4 update to the CRTM was done to

e Update the sensor coefficient files, including the renaming of the hyperspectral infrared sensor identifiers.

e Fix a number of defects.

Update of sensor coefficient files

An update of all the sensor coefficient files (the SpcCoeff and TauCoeff files) was carried out, introducing many
new sensors. See table B.1 for the full listing of instruments for which there are CRTM datafiles.

Additionally, to facilitate use of a generic sensor identifier for CRTM datafiles containing channel subsets of
hyperspectral instruments such as AIRS, TASI, and CrIS, the ”all channel” files (constructed from the individual
module or band files) are now tagged with the total channel count. The rename of the Sensor_Id’s for the
current hyperspectral sensors are shown below.

Old Sensor_Id New Sensor_Id

airs_aqua airs2378_aqua
iasimetop-a iasi8461_metop-a
iasimetop-b iasi8461_metop-b

cris_npp cris1305_npp

Bug Fixes

Fix an initialisation error in the CRTM_IRSSEM module In the adjoint procedure, CRTM_Compute_IRSSEM_AD ()
some local adjoint variable were not initialised prior to ttheir use. Under certain run conditions (based on
compiler, platform, and sensors run), this was generated floating point exceptions and halting execution.
The fix applied was to initialise the local adjoint variables in question. See ticket 259.

Fix a memory leak in the 0DPS_Predictor Define module A deallocation statement was missing a single
structure component leading to a small memory leak. The fix applied was to ensure that the components
of the allocation and deallocation statements matched. See ticket 260.

xiv

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/259
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/260

What's New in v2.0.5

The v2.0.5 update to the CRTM was done to

e Alter the intent of a number of dummy arguments in the internal cloud and aerosol scattering routines
from INTENT(QUT) to INTENT(IN OUT) to prevent automatic (re)initialisation. On some systems (primarily
linux) this can have a not insignificant effect on execution time for scattering atmosphere inputs. Results
were not changed at all via this update.

A separate release has been created to satisfy NCEP Central Operations (NCO) revision numbering conventions.
This v2.0.5 release is identical to the previous v2.0.4-pl “patch” release.

XV

What's New in v2.0.6

The v2.0.6 update to the CRTM was done to

e Address memory allocation issues on linux systems, and

e Update some sensor coefficient files.

Bug Fixes

Made internal scattering structures allocatable It was found (on linux systems only) that when the CRTM

is called to process a profile at a time — as opposed to passing in a block of profiles — the clear sky computa-
tion ran up to a factor of three slower for sensors with a low channel count. This was found to be caused by
the internal scattering structures (used to hold intermediate forward results) containing fixed-size arrays.
It appears that, on linux systems independent of compiler, these local scattering structures were being
allocated (system allocation, not Fortran allocation) on each CRTM call, even if they were never used. To
overcome this problem, these internal structures (one for cloud and one for aerosol scattering) were defined
with their components being allocatable. This eliminated the problem. CRTM results are not affected.
See ticket 374.

Update of sensor coefficient files

Update of MetOp-B AMSU-A SpcCoeff and TauCoeff coefficient files NESDIS/STAR researchers no-

ticed a large difference between observed and calculated brightness temperatures for channel 15 of MetOp-B
AMSU-A. Inspection of the sensor’s parameters used in the CRTM revealed that the central frequency for
channel 15 was incorrect, 88GHz instead of 89GHz. The central frequency was updated and the SpcCoeff
and TauCoeff coeflicient files recreated. See tickets 304 and 368.

Update of various HIRS SpcCoeff and TauCoeff coefficient files New HIRS spectral response functions

(SRFs) for NOAA-09 to MetOp-A were release by NESDIS/STAR. New SpcCoeff and TauCoeff coefficient
files were generated for these updated SRFs. See tickets 309 and 375.

Xvi

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/374
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/304
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/368
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/309
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/375

Introduction

1.1 Conventions

The following are conventions that have been adhered to in the current release of the CRTM framework. They
are guidelines intended to make understanding the code at a glance easier, to provide a recognisable “look and
feel”, and to minimise name space clashes.

1.1.1 Naming of Structure Types and Instances of Structures

The derived data type, or structure! type, naming convention adopted for use in the CRTM is,
[CRTM_] name_type
where name is an identifier that indicates for what a structure is to be used. All structure type names are

suffixed with “_type” and CRTM-specific structure types are prefixed with “CRTM_”. Some examples are,

CRTM_Atmosphere_type
CRTM_RTSolution_type

An instance of a structure is then referred to via its name, or some sort of derivate of its name. Some structure
declarations examples are,

TYPE(CRTM_Atmosphere_type) :: atm, atm_K
TYPE(CRTM_RTSolution_type) :: rts, rts_K

where the K-matrix structure variables are identified with a “_X” suffix. Similarly, tangent-linear and adjoint
variables are suffixed with “_TL” or “_AD” respectively.

1.1.2 Naming of Definition Modules

Modules containing structure type definitions are termed definition modules. These modules contain the ac-
tual structure definitions as well as various utility procedures to allocate, destroy, copy etc. structures of the
designated type. The naming convention adopted for definition modules in the CRTM is,

[CRTM_] name_Define
where, as with the structure type names, all definition module names are suffixed with “_Define” and CRTM-

specific definition modules are prefixed with “CRTM_”. Some examples are,

CRTM_Atmosphere_Define
CRTM_RTSolution_Define

The actual source code files for these modules have the same name with a “.£90” suffix.

1The terms “derived type” and “structure” are used interchangably in this document.

1.1.3 Naming of Application Modules

Modules containing the routines that perform the calculations for the various components of the CRTM are
termed application modules. The naming convention adopted for application modules in the CRTM is,

CRTM_name

Some examples are,

CRTM_AtmAbsorption
CRTM_SfcOptics
CRTM_RTSolution

However, in this case, name does not necessarilty refer just to a structure type. Separate application modules are
used as required to split up tasks in manageable (and easily maintained) chunks. For example, separate modules
have been provided to contain the cloud and aerosol optical property retrieval; similarly separate modules handle
different surface types for different instrument types in computing surface optics.

Again, the actual source code files for these modules have the same name with a “.£90” suffix. Note that not
all definition modules have a corresponding application module since some structures (e.g. SpcCoeff structures)
are simply data containers.

1.1.4 Naming of 1/0 Modules

Modules containing routines that read and write data from and to files are, naturally, termed I/O modules.
Not all data structures have associated I/O modules. The naming convention adopted for these modules in the
CRTM is,

[CRTM_] name_Binary_I0
or just
[CRTM_] name_I0

Some examples are,

CRTM_Atmosphere_I0
CRTM_RTSolution_IO

As with the other module types, the actual source code files for these modules have the same name with a “.£90”
suffix.

In the context of the CRTM, the term “Binary” is a euphemisn for sequential, unformatted I/O in Fortran.

1.2 Components

The CRTM is designed around three broad categories: atmospheric optics, surface optics and radiative transfer.

1.2.1 Atmospheric Optics

(AtmOptics) This category includes computation of the absorption by atmospheric gases (AtmAbsorption) and
scattering and absorption by both clouds (CloudScatter) and aerosols (AerosolScatter).

The gaseous absorption component computes the optical depth of the absorbing constituents in the atmosphere
given the pressure, temperature, water vapour, and ozone concentration? profiles.

2 Additional trace gas absorption capabilities are being added.

The scattering component simply interpolates look-up-tables (LUTSs) of optical properties — such as mass ex-
tinction coefficient and single scatter albedo — for cloud and aerosol types that are then used in the radiative
transfer component. See tables A.4 and A.5 for the valid cloud and aerosol types, respectively, that are valid in
the CRTM.

1.2.2 Surface Optics

(SfcOptics) This category includes the computation of surface emissivity and reflectivity for four gross surface
types (land, water, snow, and ice). Each gross surface type has a specified number of specific surface types
associated with it. See tables A.8, A.9, A.10, and A.11 for the land, water, snow, and ice surface types,
respectively, that are valid in the CRTM.

The CRTM utilises separate models for each gross surface type for each spectral type (infrared and microwave).
These models can be either physical models or database/LUT type of models.

1.2.3 Radiative Transfer Solution

(RTSolution) This category takes the AtmOptics and SfcOptics data and solves the radiative transfer problem
in either clear or scattering atmospheres.

1.3 Models

The CRTM is composed of four models: a forward model, a tangent-linear model, an adjoint model, and a
K-matrix model. These can be represented as shown in equations 1.1a to 1.1d.

Tg,R = F(T,q,Ts,...) (1.1a)

6T, 0R = H(T,q,T,,..0T,6q,0T;,...) (1.1b)

8T, 0%q,6"T,,... = HT(T,q,Ts,...0"TB) (1.1c)
0Ty, 0%q;,6Tsy,... = K(T,q,Ts,..0°Tg) for I =1,2,...,L (1.1d)

Here F is the forward operator that, given the atmospheric temperature and absorber profiles (T and q), surface
temperature (Ts), etc., produces a vector of channel brightness temperatures (Tg) and radiances (R).

The tangent-linear operator, H, represents a linearisation of the forward model about T, q, T%, etc. and when
also supplied with perturbations about the linearisation point (quantities represented by the 0’s) produces the
expected perturbations to the brightness temperature and channel radiances.

The adjoint operator, HT, is simply the transpose of the tangent-linear operator and produces gradients (the
quantities represented by the §*s). It is worth noting that, in the CRTM, these adjoint gradients are accumulated
over channel and thus do not represent channel-specific Jacobians.

The K-matrix operator®, K, is effectively the same as the adjoint but with the results preserved by channel
(indicated via the subscript {). In the CRTM, the adjoint and K-matrix results are related by,

L
0 = Z&*J;l (1.2)
=1

3The term K-matrix is used because references to this operation in the literature commonly use the symbol K

Thus, the K-matrix results are the derivatives of the diagnostic variables with respect to the prognostic variables,
e.g.

GTBJ

oy =
i ox

(1.3)

Typically, only the forward or K-matrix models are used in applications. However, the intermediate models are
generated and retained for maintenance and testing purposes. Any changes to the CRTM forward model are
translated to the tangent-linear model and the latter tested against the former. When the tangent-linear model
changes have been verified, the changes then translated to the adjoint model and, as before, the latter is tested
against the former. This process is repeated for the adjoint-to-K-matrix models also.

1.4 Design Framework

This document is not really the place to fully discuss the design framework of the CRTM, so it will only be
briefly mentioned here. Where appropriate, different physical processes are isolated into their own modules. The
CRTM interfaces presented to the user are, at their core, simply drivers for the individual parts. This is shown
schematically in the forward and K-matrix model flowcharts of figure 1.1.

A fundamental tenet of the CRTM design is that each component define its own structure definition and applica-
tion modules to facilitate independent development of an algorithm outside of the mainline CRTM development.
By isolating different processes, we can more easily identify requirements for an algorithm with a view to min-
imise or eliminate potential software conflicts and/or redundancies. The end result sought via this approach is
that components developed by different groups can more easily be added into the framework leading to faster
implementation of new science and algorithms.

Profile loop

Begin
Forward Model

Sensor loop

,,,,,,,,,,,,,, ‘

Compute
surface temperature

l

Compute AtmAbsorption
predictors

Compute AtmAbsorption
optical depth

Yes

Compute CloudScatter
optical properties

No

Any
aerosols?

Compute AerosolScatter
optical properties

Combine AtmAbsorption,|
CloudScatter and
AerosolScatter

Sensor channel loop

RTSolution

Compute stream
angles

!

Compute SfcOptics
at stream angles

}

Perform radiative
transfer

Another
channel?

Another
sensor?

Another
profile?

Forward Model
complete

(a) Forward Model

Figure 1.1: Flowchart of the CRTM Forward and K-Matrix models.

Profile loop

Begin
K-Matrix Model

Channel independent

"""""""" - forward model
calculations
Channel dependent
""""""" R forward model

calculations

RTSolution adjoint

Compute stream
angles

'

Perform adjoint
radiative transfer

}

Compute adjoint
SfcOptics

Adjoint AtmAbsorption,
CloudScatter and
AerosolScatter combine

aerosols?

Compute adjoint
AerosolScatter

Sensor loop
Sensor channel loop

Yes

No

Compute adjoint
CloudScatter

)

Compute adjoint
AtmAbsorption

l

Compute adjoint
predictors

l

Compute adjoint
surface temperature

Another
channel?

Another
sensor?

Another
profile?

K-Matrix Model
complete

(b) K-Matrix Model

How to obtain the CRTM

2.1 CRTM ftp download site

The CRTM source code and coefficients are released in a compressed tarball! via the CRTM ftp site:
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/

The REL-2.0.4 release is available directly from
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.0.4

Also note that additional releases, e.g. beta or experimental branches, may also made available on this ftp site.

2.2 Coefficient Data

All of the transmittance, spectral, cloud, aerosol, and emissivity coefficient data needed by the CRTM are
available in the fix/? subdirectory. The coefficient directory structure is organised by coefficient and format
type as shown in figure 2.1.

Both big- and little-endian format files are provided to save users the trouble of switching what they use for
their system®. Note in the TauCoeff directory there are two subdirectories: ODAS and ODPS. These directories
correspond to the coefficient files for the different transmittance model algorithms. The user can select which
algorithm to use by using the corresponding TauCoeff file.

To run the CRTM, all the required coefficient files need to be in the same path (see the CRTM initialisation
function description) so users will have to move/link the datafiles as required.

LA compressed (e.g. gzip’d) tape archive (tar) file.

2The directory name ”£ix” is an NCEP standard name for a location containing files that do not change (frequently), i.e. they
are "fixed”.

3 All of the supplied configurations for little-endian platforms described in Section 3 use compiler switches to default to big-endian
format.

ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.0.4

CRTM _Coefficients/

— SpcCoeff/
t Big_Endian/ } Spectral coefficients
Little_Endian/

— TauCoeff/

ODAS/ } ODAS fast transmittance

Big_Endian/ .
t Little Endian/ model coeflicients

Big_Endian/ :
Little Endian/ model coefficients

— AerosolCoeff/
t Big_Endian/ } Aerosol optical properties
Little_Endian/

— CloudCoeff/
t Big_Endian/ } Cloud optical properties
Little_Endian/

— EmisCoeff/
t Big_Endian/ } Surface emissivity model coefficients
Little_Endian/

OEDPS/ } ODPS fast transmittance

Figure 2.1: The CRTM coefficients directory structure

How to build the CRTM library

3.1 Build Files

The build system for the CRTM is currently quite unsophisticated. It consists of a number of make, include,
and configuration files in the CRTM tarball hierarchy:

makefile : The main makefile

make .macros : The include file containing the defined macros.

make.rules : The include file containing the suffix rules for compiling Fortran95/2003 source
code.

configure : The directory containing build environment definitions.

3.2 Predefined Configuration Files

The build makefiles now assumes that environment variables (envars) will be defined that describe the compilation
and link environment. The envars that must be defined are:

FC : the Fortran95/2003 compiler executable,
FC_FLAGS : the flags/switches provided to the Fortran compiler,
FL : the linker used to create the executable test/example programs, and

FL_FLAGS : the flags/switches provided to the linker.

Several shell source files are provided for the build environment definitions for the compilers to which we have
access and have tested here at the JCSDA. These shell source files are in the configure subdirectory of the
tarball. The configuration files provided are shown in table 3.1. Both “production” and debug configurations are
supplied, with the former using compiler switches to produce fast code and the latter using compiler switches
to turn on all the available debugging capabilities. Note that the debug configurations will produce executables
much slower than the production builds.

Platform Compiler Production Debug
GNU gfortran gfortran.setup gfortran debug.setup
Linux Intel ifort intel.setup intel_debug.setup
PGI pgf95 pgi.setup pgi_debug.setup
£95 g95.setup g95_debug.setup
IBM AIX x1f95 x1f.setup x1f_debug.setup

Table 3.1: Supplied configuration files for the CRTM library and test/example program build.

3.3 Compilation Environment Setup

To set the compilation envars for your CRTM build, you need to source the required “setup” file. For example,
to use gfortran to build the CRTM you would type

configure/gfortran.setup

“won

in the main directory. Note the
following:

and space preceding the filename. This should print out something like the

CRTM compilation environment variables:
FC: gfortran
FC_FLAGS: -c -03 -fconvert=big-endian -ffast-math -ffree-form
-fno-second-underscore -frecord-marker=4 -funroll-loops
-ggdb -static -Wall
FL: gfortran
FL_FLAGS:

indicating the values to which the envars have been set.

Change the supplied setups to suit your needs. If you use a different compiler please consider submitting your
compilation setup to be included in future releases.

Note that as of CRTM v2.0, the Fortran compiler needs to be compatible with the ISO TR-~15581 Allocatable
Enhancements update to Fortran95. Most current Fortran95 compilers do support TR-15581.

3.4 Building the library

Once the compilation environment has been set, the CRTM library build is performed by simply typing,
make

If you are using the DEBUG compiler flags you may, unfortunately, see many warnings similar to:

Warning (137): Variable ’cosaz’ at (1) is never used and never set
Warning (112): Variable ’rlongitude’ at (1) is set but never used
Warning (140): Implicit conversion at (1) may cause precision loss
Warning: Unused dummy argument ’group_index’ at (1)
PGF90-I-0035-Predefined intrinsic scale loses intrinsic property
etc..

The actual format of the warning message depends on the compiler. We are working on eliminating these warning
messages.

3.5 Testing the library

Several test/example programs exercising the forward and K-matrix functions have been supplied with the
CRTM. To build and run all these tests, type,

make test

This process does generate a lot of output to screen so be prepared to scroll through it. Currently there are five
forward model test, or example, programs:

test/forward/Examplel_Simple
test/forward/Example2_SSU
test/forward/Example3_Zeeman
test/forward/Example4_0DPS
test/forward/Example5_ClearSky

And there are four cases for the K-matrix model:
test/k_matrix/Examplel_Simple
test/k_matrix/Example2_SSU
test/k_matrix/Example3_Zeeman

test/k_matrix/Example4_0DPS

Both the forward and K-matrix tests should end with output that looks like:

SUMMARY OF ALL RESULTS

Passed 14 of 14 tests.
Failed O of 14 tests.

Currently they both have the same number of tests. If you encounter failures you might see something like:

SUMMARY OF ALL RESULTS

Passed 10 of 14 tests.
Failed 4 of 14 tests. <—-——-<<< *x*WARNING**

Some important things to note about the tests:

e The supplied results were generated using the gfortran DEBUG build.

e Comparisons between DEBUG and PRODUCTION builds can be different due to various compiler switches
that modify floating point arithmetic (e.g. optimisation levels), or different hardware.

e For test failures, you can view the differences between the generated and supplied ASCII output files. For
example, to view the K-matrix Examplel Simple test case differences for the amsua metop-a sensor you
would do something like:

$ cd test/k_matrix/Examplel_Simple
$ diff -u amsua_metop-a.output results/amsua_metop-a.output | more

where the amsua_metop-a.output file is generated during the test run, and the results/amsua metop-a.output

file is supplied with the CRTM tarball.

10

3.6 Installing the library

A very simple install target is specified in the supplied makefile to put all the necessary include files (the generated
*.mod files containing all the procedure interface information) in an /include subdirectory and the library itself
(the generated 1ibCRTM.a file) in a /1ib subdirectory. The make command is

make install

The /include and /1ib subdirectories can then be copied/moved/linked to a more suitable location on your
system, for example: $HOME/local/CRTM

NOTE: Currently, running the tests also invokes this install target. That will change in future tarball releases
so do not rely on the behaviour.

3.7 Clean Up

Two cleanup targets are provided in the makefile:
make clean

Removes all the compilation and link products from the 1ibsrc/ directory.
make distclean

This does the same as the “clean” target but also deletes the library and include directories created by the
“install” target.

3.8 Linking to the library

Let’s assume you’ve built the CRTM library and placed the /include and /1ib subdirectories in your own local
area, $HOME/local/CRTM. In the makefile for your application that uses the CRTM, you will need to add

-I$HOME/local/CRTM/include
to your list of compilation switches, and the following to your list of link switches,

-L$HOME/local/CRTM/1ib -1CRTM

11

How to use the CRTM library

4.1 Step by Step Guide

This section will hopefully get you started using the CRTM library as quickly as possible. Refer to the following
sections for more information about the structures and interfaces.

The examples shown here assume you are processing one sensor at a time. The CRTM can handle multiple
sensors at once, but specifying the input information in a simple way is difficult; e.g. the Geometry structure
that is used to specify the sensor viewing geometry — even sensors on the same platform typically have different
numbers of fields-of-view (FOVs) per scan. For multiple sensor processing, we’ll assume they will be separately
processed in parallel.

Because there are many variations in what information is known ahead of time (and by “ahead of time” we mean
at compile-time of your code), let’s approach this via examples for a fixed number of atmospheric profiles, and
a known sensors. It is left as an exercise to the reader to tailor calls to the CRTM in their application code
according to their particular needs.

With regards to sensor identification, the CRTM uses a character string — refered to as the Sensor_Id — to distin-
guish sensors and platforms. The lists of currently supported sensors, along with their associated Sensor_Id’s,
are shown in appendix B.

4.1.1 Step 1: Access the CRTM module

All of the CRTM user procedures, parameters, and derived data type definitions are accessible via the con-
tainer module CRTM_Module. Thus, one needs to put the following statement in any calling program, module or
procedure,

USE CRTM_Module

Once you become familiar with the components of the CRTM you require, you can also specify an ONLY clause
with the USE statement,

USE CRTM_Module[, ONLY:only-list]

where only-list is a list of the symbols you want to “import” from CRTM_Module. This latter form is the preferred
style for self-documenting your code; e.g. when you give the code to someone else, they will be able to identify
from which module various symbols in your code originate.

4.1.2 Step 2: Declare the CRTM structures

To compute satellite radiances you need to declare structures for the following information,

1. Atmospheric profile data such as pressure, temperature, absorber amounts, clouds, aerosols, etc. Handled
using the Atmosphere structure.

12

2. Surface data such as type of surface, temperature, surface type specific parameters etc. Handled using the
Surface structure.

3. Geometry information such as sensor scan angle, zenith angle, etc. Handled using the Geometry structure.

4. Instrument information, particularly which instrument(s), or sensor(s)!, you want to simulate. Handled
using the ChannelInfo structure.

5. Results of the radiative transfer calculation. Handled using the RTSolution structure.

6. Optional inputs. Handled using the Options structure.

Let’s assume you want to process, say, 50 profiles for the NOAA-18 AMSU-A sensor which has 15 channels. The
forward model declarations would look something like,

! Processing parameters

INTEGER , PARAMETER :: N_SENSORS = 1

INTEGER , PARAMETER :: N_CHANNELS = 15

INTEGER , PARAMETER :: N_PROFILES = 50

CHARACTER(*), PARAMETER :: SENSOR_ID(N_SENSORS) = (/’amsua_n18’/)
TYPE(CRTM_ChannelInfo_type) :: chInfo(N_SENSORS)
TYPE(CRTM_Geometry_type) :: geo(N_PROFILES)
TYPE(CRTM_Options_type) :: opt(N_PROFILES)

! Forward declarations

TYPE(CRTM_Atmosphere_type) :: atm(N_PROFILES)
TYPE(CRTM_Surface_type) :: sfc(N_PROFILES)
TYPE(CRTM_RTSolution_type) :: rts(N_CHANNELS,N_PROFILES)

If you are also interested in calling the K-matrix model, you will also need the following declarations,

! K-Matrix declarations

TYPE(CRTM_Atmosphere_type) :: atm_K(N_CHANNELS,N_PROFILES)
TYPE(CRTM_Surface_type) :: sfc_K(N_CHANNELS,N_PROFILES)
TYPE(CRTM_RTSolution_type) :: rts_K(N_CHANNELS,N_PROFILES)

4.1.3 Step 3: Initialise the CRTM

The CRTM is initialised by calling the CRTM_Init () function. This loads all the various coefficient data used
by CRTM components into memory for later use. We’ll assume that all the required datafiles reside in the
subdirectory ./coeff_data and follow on from the example of Step 2. The CRTM initialisation is profile
independent, so we're only dealing with sensor information here. The CRTM initialisation function call looks
like,

INTEGER :: errStatus

errStatus = CRTM_Init(SENSOR_ID, chInfo, File_Path=’./coeff_data’)
IF (errStatus /= SUCCESS) THEN

handle error...
END IF

Here we see for the first time how the CRTM functions let you know if they were successful. As you can see
the CRTM_Init () function result is an error status that is checked against a parameterised integer error code,
SUCCESS. The function result should not be tested against the actual value of the error code, just its parameterised
name. Other available error code parameters are FAILURE, WARNING, and INFORMATION — although the latter is
never used as a function result.

For a list of all the accepted sensor identifiers, see appendix B.

1The terms “instrument” and “sensor” are used interchangeably in this document.

13

4.1.4 Step 4: Allocate the CRTM structures

Now we need to create instances of the various CRTM structures where necessary to hold the input or output
data. Functions are used to perform any necessary component allocations allocations. The function naming
convention is CRTM_object_Create where, for typical usage, the CRTM structures that need to be allocated are
the Atmosphere, RTSolution and, if used, Options structures. Potentially, the SensorData component of the
Surface structure may also need to be allocated to allow for input of sensor observations for some of the NESDIS
microwave surface emissivity models.

Allocation of the Atmosphere structures

First, we’ll allocate the atmosphere structures to the required dimensions. The forward variable is allocated like
S0:

! Allocate the forward atmosphere structure

CALL CRTM_Atmosphere_Create(atm , & ! Object
n_Layers , & ! Input
n_Absorbers, & ! Input
n_Clouds , & ! Input
n_Aerosols) ! Input

! Check it was actually allocated

IF (ANY(.NOT. CRTM_Atmosphere_Associated(atm))) THEN
handle error...

END IF

and the K-matrix variable is allocated by looping over all profiles?,

! Allocate the K-matrix atmosphere structure
DO m = 1, N_PROFILES

CALL CRTM_Atmosphere_Create(atm_k(:,m) , & ! Object
n_Layers , & ! Input
n_Absorbers, & ! Input
n_Clouds , & ! Input
n_Aerosols) ! Input

! Check they were actually allocated
IF (ANY(.NOT. CRTM_Atmosphere_Associated(atm_k(:,m)))) THEN
handle error...
END IF
END DO

Note that for the ODAS algorithm the allowed number of absorbers is at most two: that of HoO and Os. For
the ODPS algoithm, COy can also be specified. In future releases, trace gases such as CO, CHy, and NoO will
also be accepted as input.

Allocation of the RTSolution structure

To return additional information used in the radiative transfer calculations, such as upwelling radiance and layer
optical depth profiles, the RT'Solution structure must be allocated to the number of atmospheric layers used:

! Allocate the RTSolution structure
CALL CRTM_RTSolution_Create(rts , & ! Object
n_Layers) ! Input

2The CRTM_Atmosphere_Create function is defined as elemental so the profile loop is not strictly needed

14

! Check it was actually allocated

IF (ANY(.NOT. CRTM_RTSolution_Associated(rts))) THEN
handle error...

END IF

Note that internal checks are performed in the CRTM to determine if the RTSolution structure has been allocated
before its array components are accessed. Thus, if the additional information is not required, the RTSolution
structure does not need to be allocated. Also, the extra information returned is only applicable to the forward
model, not any of the tangent-linear, adjoint, or K-matrix models.

Allocation of the Options structure

If user-supplied surface emissivity data is to be used, then the options structure must first be allocated to the
necessary number of channels:

! Allocate the options structure
CALL CRTM_Options_Create(opt , & ! Object
n_Channels) ! Input
! Check it was actually allocated
IF (ANY(.NOT. CRTM_Options_Associated(opt))) THEN
handle error...
END IF

If no emissivities are to be input, the options structure does not need to be allocated.

4.1.5 Step 5: Fill the CRTM input structures with data

This step simply entails filling the input atm, sfc, geo, and, if used, opt structures with the required information.
However, there are some issues that need to be mentioned:

e In the CRTM, all profile layering is from top-of-atmosphere (TOA) to surface (SFC). So, for an atmospheric
profile layered as k = 1,2, ..., K, layer 1 is the TOA layer and layer K is the SFC layer.

e In the Atmosphere structure, the Climatology component is not yet used.
e In the Atmosphere structure, both the level and layer pressure profiles must be specified.

e In the Atmosphere structure, the absorber profile data units must be mass mixing ratio for water vapour
and ppmv for other absorbers. The Absorber_Units component is not yet utilised to allow conversion of
different user-supplied concentration units.

e In the Atmosphere structure, the Absorber_Id array must be set to the correct absorber identifiers (see
table A.2) to allow the software to find a particular absorber. There is no necessary order in specifying the
concentration profiles for different gaseous absorbers.

e In the Surface structure, the sum of the coverage types must add up to 1.0.
¢ In the Geometry structure, the sensor zenith and sensor scan angles should be consistent.

e Graphical definitions of the Geometry structure sensor scan, sensor zenith, sensor azimuth, source zenith,
and source azimuth angles are shown in figures A.8, A.9, A.10, A.11, and A.12 respectively.

¢ The Options structure contains two “substructures”, SSU_Input and Zeeman Input to hold the necessary
inputs for the SSU and Zeeman transmittance models. These substructures are private and can only be
access via “GetValue” and “SetValue” functions as discussed further below.

15

For the K-matrix structures, you should zero the K-matrix outputs, atm X, sfc K,

! Zero the K-matrix OUTPUT structures
CALL CRTM_Atmosphere_Zero(atm_K)
CALL CRTM_Surface_Zero(sfc_K)

and initialise the K-matrix input, rts_X, to provide you with the derivatives you want. For example, if you want
the atm K, sfc_K outputs to contain brightness temperature derivatives, you should initialise rts X like so,

! Initialise the K-Matrix INPUT to provide dTb/dx derivatives
rts_K/Radiance = ZERO
rts_KJ)Brightness_Temperature = ONE

Alternatively, if you want radiance derivatives returned in atm_K and sfc_K, the rts_K structure should be
initialised like so,

! Initialise the K-Matrix INPUT to provide dR/dx derivatives
rts_K)Radiance = ONE
rts_KJBrightness_Temperature = ZERO

Filling the Options substructures for SSU and Zeeman model input

As mentioned above, the SSU_Input and Zeeman _Input data structures are private. This means the contents of
the structure cannot be accessed directly, but via helper subroutines. For example, to set the SSU instrument
mission time, one would call the SSU_Input_SetValue subroutine,

! Set the SSU input data in the options substructure
CALL SSU_Input_SetValue(opt%SSU_Input , & ! Object

Time=mission_time) ! Optional input

where the local variable mission_time contains the required time.

Similarly for the necessary Zeeman model parameters,

! Set the Zeeman input data in the options substructure

CALL Zeeman_Input_SetValue(optlZeeman_Input , & ! Object
Field_Strength=Be , & ! Optional input
Cos_ThetaB =angle) ! Optional input

where, again, Be and angle are the local variables for the necessary data.

4.1.6 Step 6: Call the required CRTM function

At this point, much of the prepatory heavy lifting has been done. The CRTM function calls themselves are quite
simple. For the forward model we do,

errStatus = CRTM_Forward(atm , & ! Input
sfc , & ! Input
geo , & ! Input
chInfo , & ! Input
rts , & ! Output
Options=opt) ! Optional input

IF (errStatus /= SUCCESS) THEN
handle error...
END IF

16

and for the K-matrix model, the calling syntax is,

errStatus = CRTM_K_Matrix(atm , & ! Forward input
sfc , & ! Forward input
rts_K , & ! K-matrix input
geo , & ! Input
chInfo , & ! Input
atm_K , & ! K-matrix output
sfc_K , & ! K-matrix output
rts , & ! Forward output
Options=opt) ! Optional input

IF (errStatus /= SUCCESS) THEN
handle error...
END IF

Note that the K-matrix model also returns the forward model radiances. The tangent-linear and adjoint models
have similar call structures and will not be shown here.

4.1.7 Step 7: Destroy the CRTM and cleanup

The last step is to cleanup. This involves calling the CRTM destruction function

errStatus = CRTM_Destroy(chInfo)

IF (errStatus /= SUCCESS) THEN
handle error...

END IF

to deallocate all the shared coefficient data, as well as calling the individual structure destroy functions to
deallocate as required. For the example here, that entails deallocating the various structure arrays that were
created in Step 4.1.4. The cleanup mirrors that of the create step:

CALL CRTM_Options_Destroy(opt)

CALL CRTM_RTSolution_Destroy(rts)
CALL CRTM_Atmosphere_Destroy(atm_K)
CALL CRTM_Atmosphere_Destroy(atm)

4.2 Interface Descriptions

4.2.1 CRTM_Init interface

NAME:
CRTM_Init

PURPOSE:
Function to initialise the CRTM.

CALLING SEQUENCE:
Error_Status = CRTM_Init(Sensor_ID , &
ChannelInfo , &
CloudCoeff_File CloudCoeff_File , &
AerosolCoeff_File AerosolCoeff_File, &

17

EmisCoeff_File = EmisCoeff_File s
File_Path = File_Path s
Load_CloudCoeff = Load_CloudCoeff ,
Load_AerosolCoeff = Load_AerosolCoeff,
Quiet = Quiet s
Process_ID = Process_ID s
Output_Process_ID = Output_Process_ID

e

INPUTS:

Sensor_ID: List of the sensor IDs (e.g. hirs3_nl7, amsua_nl8,
ssmis_f16, etc) with which the CRTM is to be
initialised. These sensor ids are used to construct
the sensor specific SpcCoeff and TauCoeff filenames
containing the necessary coefficient data, i.e.

<Sensor_ID>.SpcCoeff.bin
and

<Sensor_ID>.TauCoeff.bin
for each sensor Id in the list.
UNITS: N/A
TYPE: CHARACTER (*)
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN), OPTIONAL

OUTPUTS:

ChannelInfo: ChannelInfo structure array populated based on
the contents of the coefficient files and the
user inputs.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type

DIMENSION: Same as input Sensor_Id argument
ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:

CloudCoeff _File: Name of the CRTM Binary format CloudCoeff file
containing the scattering coefficient data. If not
specified the default filename is "CloudCoeff.bin".
UNITS: N/A
TYPE: CHARACTER (*)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

AerosolCoeff_File: Name of the CRTM Binary format AerosolCoeff file
containing the aerosol absorption and scattering
coefficient data. If not specified the default
filename is "AerosolCoeff.bin".

UNITS: N/A

TYPE: CHARACTER (%)
DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

EmisCoeff_File: Name of the CRTM Binary format EmisCoeff file
containing the IRSSEM coefficient data. If not
specified the default filename is "EmisCoeff.bin".
UNITS: N/A

18

TYPE: CHARACTER (*)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

File_Path: Character string specifying a file path for the
input data files. If not specified, the current
directory is the default.

UNITS: N/A

TYPE: CHARACTER (%)
DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Load_CloudCoeff: Set this logical argument for not loading the CloudCoeff data
to save memory space under the clear conditions
If == .FALSE., the CloudCoeff data will not be loaded;
== .TRUE., the CloudCoeff data will be loaded.
If not specified, default is .TRUE. (will be loaded)
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Load_AerosolCoeff: Set this logical argument for not loading the AerosolCoeff data
to save memory space under the clear conditions
If == .FALSE., the AerosolCoeff data will not be loaded;
== .TRUE., the AerosolCoeff data will be loaded.
If not specified, default is .TRUE. (will be loaded)
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Process_ID: Set this argument to the MPI process ID that this
function call is running under. This value is used
solely for controlling INFORMATION message output.

If MPI is not being used, ignore this argument.

This argument is ignored if the Quiet argument is set.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Output_Process_ID: Set this argument to the MPI process ID in which
all INFORMATION messages are to be output. If

19

the passed Process_ID value agrees with this value
the INFORMATION messages are output.
This argument is ignored if the Quiet argument

is set.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error
status. The error codes are defined in the
Message_Handler module.
If == SUCCESS the CRTM initialisation was successful
== FAILURE an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
All public data arrays accessed by this module and its dependencies
are overwritten.

RESTRICTIONS:
If specified, the length of the combined file path and filename strings
cannot exceed 2000 characters.

4.2.2 CRTM_Forward interface

NAME:
CRTM_Forward

PURPOSE:
Function that calculates top-of-atmosphere (TOA) radiances
and brightness temperatures for an input atmospheric profile or
profile set and user specified satellites/channels.

CALLING SEQUENCE:
Error_Status = CRTM_Forward(Atmosphere ,
Surface ,
Geometry ,
ChannelInfo ,
RTSolution s
Options = Options

e

INPUTS:
Atmosphere: Structure containing the Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)

20

ATTRIBUTES: INTENT(IN)

Surface: Structure containing the Surface data.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Geometry: Structure containing the view geometry
information.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

ChannelInfo: Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN)

OUTPUTS:
RTSolution: Structure containing the soluition to the RT equation
for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:
Options: Options structure containing the optional arguments
for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

COMMENTS :

- The Options optional input structure argument contains
spectral information (e.g. emissivity) that must have the same
spectral dimensionality (the "L" dimension) as the output
RTSolution structure.

21

- The INTENT on the output RTSolution argument is IN OUT rather
than just OUT. This is necessary because the argument may be defined
upon input. To prevent memory leaks, the IN OUT INTENT is a must.

4.2.3 CRTM_Tangent_Linear interface

NAME:

CRTM_Tangent_Linear

PURPOSE:

Function that calculates tangent-linear top-of-atmosphere (TOA)
radiances and brightness temperatures for an input atmospheric
profile or profile set and user specified satellites/channels.

CALLING SEQUENCE:

Error_Status = CRTM_Tangent_Linear(Atmosphere ,

INPUTS:
Atmosphere:

Surface:

Atmosphere_TL:

Surface_TL:

&
Surface , &
Atmosphere_TL , &
Surface_TL , &
Geometry , &
ChannelInfo , &
RTSolution , &
RTSolution_TL , &
Options = Options)

Structure containing the Atmosphere data.
UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)

Structure containing the Surface data.

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Structure containing the tangent-linear Atmosphere data.
UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Structure containing the tangent-linear Surface data.
UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

22

Geometry:

ChannelInfo:

OUTPUTS:
RTSolution:

RTSolution_TL:

OPTIONAL INPUTS:
Options:

FUNCTION RESULT:
Error_Status:

COMMENTS:

Structure containing the view geometry

information.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1 (n_Sensors)

ATTRIBUTES: INTENT(IN)

Structure containing the solution to the RT equation
for the given inputs.

UNITS: N/A

TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Structure containing the solution to the tangent-
linear RT equation for the given inputs.

UNITS: N/A

TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Options structure containing the optional forward model
arguments for the CRTM.

UNITS: N/A

TYPE: CRTM_Options_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.

If == SUCCESS the computation was sucessful
== FAILURE an unrecoverable error occurred

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

- The Options optional input structure arguments contain
spectral information (e.g. emissivity) that must have the same
spectral dimensionality (the "L" dimension) as the output
RTSolution structures.

- The INTENT on the output RTSolution arguments are IN OUT rather

23

than just OUT. This is necessary because the arguments may be defined
upon input. To prevent memory leaks, the IN OUT INTENT is a must.

4.2.4 CRTM_Adjoint interface

NAME:
CRTM_Adjoint

PURPOSE:
Function that calculates the adjoint of top-of-atmosphere (TOA)
radiances and brightness temperatures for an input atmospheric
profile or profile set and user specified satellites/channels.

CALLING SEQUENCE:

Error_Status = CRTM_Adjoint(Atmosphere , &
Surface , &
RTSolution_AD , &
Geometry , &
ChannelInfo , &
Atmosphere_AD , &
Surface_AD , &
RTSolution , &
Options = Options)
INPUTS:
Atmosphere: Structure containing the Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)
Surface: Structure containing the Surface data.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

RTSolution_AD: Structure containing the RT solution adjoint inputs.
**xNOTE: On EXIT from this function, the contents of
this structure may be modified (e.g. set to

zero.)
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Geometry: Structure containing the view geometry
information.
UNITS: N/A
TYPE: CRTM_Geometry_type

24

ChannelInfo:

OPTIONAL INPUTS:
Options:

OUTPUTS:
Atmosphere_AD:

Surface_AD:

RTSolution:

FUNCTION RESULT:
Error_Status:

DIMENSION: Same as input Atmosphere argument
ATTRIBUTES: INTENT(IN)

Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1 (n_Sensors)

ATTRIBUTES: INTENT(IN)

Options structure containing the optional forward model
arguments for the CRTM.

UNITS: N/A

TYPE: CRTM_Options_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

Structure containing the adjoint Atmosphere data.

**NOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)

UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Same as input Atmosphere argument

ATTRIBUTES: INTENT(IN OUT)

Structure containing the tangent-linear Surface data.

**NOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere argument

ATTRIBUTES: INTENT(IN OUT)

Structure containing the solution to the RT equation
for the given inputs.

UNITS: N/A

TYPE: CRTM_RTSolution_type

DIMENSION: Same as input RTSolution_AD argument
ATTRIBUTES: INTENT(IN OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.

If == SUCCESS the computation was sucessful
== FAILURE an unrecoverable error occurred

UNITS: N/A

TYPE: INTEGER

25

DIMENSION: Scalar

SIDE EFFECTS:
Note that the input adjoint arguments are modified upon exit, and
the output adjoint arguments must be defined upon entry. This is
a consequence of the adjoint formulation where, effectively, the
chain rule is being used and this function could reside anywhere
in the chain of derivative terms.

COMMENTS:
- The Options optional structure arguments contain
spectral information (e.g. emissivity) that must have the same
spectral dimensionality (the "L" dimension) as the RTSolution
structures.

- The INTENT on the output RTSolution, Atmosphere_AD, and
Surface_AD arguments are IN OUT rather than just OUT. This is
necessary because the arguments should be defined upon input.
To prevent memory leaks, the IN OUT INTENT is a must.

4.2.5 CRTM_K_Matrix interface

NAME:
CRTM_K_Matrix

PURPOSE:
Function that calculates the K-matrix of top-of-atmosphere (TOA)
radiances and brightness temperatures for an input atmospheric
profile or profile set and user specified satellites/channels.

CALLING SEQUENCE:

Error_Status = CRTM_K_Matrix(Atmosphere , &
Surface , &
RTSolution_K , &
Geometry , &
ChannelInfo , &
Atmosphere_K , &
Surface_K , &
RTSolution , &
Options = Options)
INPUTS:
Atmosphere: Structure containing the Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)
Surface: Structure containing the Surface data.

UNITS: N/A

26

TYPE: CRTM_Surface_type
DIMENSION: Same as input Atmosphere argument.
ATTRIBUTES: INTENT(IN)

RTSolution_K: Structure containing the RT solution K-matrix inputs.
**NOTE: On EXIT from this function, the contents of
this structure may be modified (e.g. set to

zero.)
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Geometry: Structure containing the view geometry
information.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Same as input Atmosphere argument
ATTRIBUTES: INTENT(IN)

ChannelInfo: Structure returned from the CRTM_Init() function
that contains the satellite/sesnor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Options: Options structure containing the optional forward model
arguments for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

OUTPUTS:
Atmosphere_K: Structure containing the K-matrix Atmosphere data.
**NOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Same as input RTSolution_K argument
ATTRIBUTES: INTENT(IN OUT)
Surface_K: Structure containing the tangent-linear Surface data.

**NOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)

UNITS: N/A

TYPE: CRTM_Surface_type

27

DIMENSION: Same as input RTSolution_K argument
ATTRIBUTES: INTENT(IN OUT)

RTSolution: Structure containing the solution to the RT equation
for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Same as input RTSolution_K argument
ATTRIBUTES: INTENT(IN OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
Note that the input K-matrix arguments are modified upon exit, and
the output K-matrix arguments must be defined upon entry. This is
a consequence of the K-matrix formulation where, effectively, the
chain rule is being used and this funtion could reside anywhere
in the chain of derivative terms.

COMMENTS:
- The Options optional structure arguments contain
spectral information (e.g. emissivity) that must have the same
spectral dimensionality (the "L" dimension) as the RTSolution
structures.

- The INTENT on the output RTSolution, Atmosphere_K, and Surface_K,
arguments are IN OUT rather than just OUT. This is necessary because
the arguments should be defined upon input. To prevent memory leaks,
the IN OUT INTENT is a must.

4.2.6 CRTM_Destroy interface

NAME:
CRTM_Destroy

PURPOSE:
Function to deallocate all the shared data arrays allocated and
populated during the CRTM initialization.

CALLING SEQUENCE:

Error_Status = CRTM_Destroy(ChannellInfo , &
Process_ID = Process_ID)

28

OUTPUTS:
ChannelInfo: Reinitialized ChannelInfo structure.
UNITS: N/A
TYPE: CRTM_ChannelInfo_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:

Process_ID: Set this argument to the MPI process ID that this
function call is running under. This value is used
solely for controlling message output. If MPI is not
being used, ignore this argument.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error
status. The error codes are defined in the
Message_Handler module.
If == SUCCESS the CRTM deallocations were successful
== FATILURE an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
A1l CRTM shared data arrays and structures are deallocated.

COMMENTS:
Note the INTENT on the output ChannelInfo argument is IN OUT rather than
just OUT. This is necessary because the argument may be defined upon
input. To prevent memory leaks, the IN OUT INTENT is a must.

29

Bibliography

F.M. Breon. An analytical model for the cloud-free atmosphere/ocean system reflectance. Remote Sens. Environ.,
43(2):179-192, 1993.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B.N. Holben, B.N. Duncan, R.V. Martin, J.A. Logan, A. Higurashi,
and T. Nakajima. Tropospheric aerosol optical thickness from the GOCART model and comparisons with
satellite and sun photometer meaasurements. J. Atmos. Sci., 59:461-483, 2002.

Q. Liu and E. Ruprecht. Radiative transfer model: matrix operator method. Appl. Opt., 35(21):4229-4237,
1996.

N.R. Nalli, P.J. Minnett, and P. van Delst. Emissivity and reflection model for calculating unpolarized isotropic
water surface-leaving radiance in the infrared. 1: Theoretical development and calculations. Appl. Opt., 47
(21):3701-3721, 2008a.

X. Wu and W.L. Smith. Emissivity of rough sea surface for 8-13um: modeling and verification. Appl. Opt., 36
(12):2609-2619, 1997.

30

A
(Structure and procedure interface definitions

31

A.1 ChannelInfo Structure

TYPE :: CRTM_ChannellInfo_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimensions
INTEGER :: n_Channels = 0 ! L dimension
! Scalar data
CHARACTER (STRLEN) :: Sensor_ID = 7

INTEGER :: WMO_Satellite_ID = INVALID_WMO_SATELLITE_ID
INTEGER :: WMO_Sensor_ID = INVALID_WMO_SENSOR_ID
INTEGER :: Sensor_Index =0

! Array data

INTEGER, ALLOCATABLE :: Sensor_Channel(:)
INTEGER, ALLOCATABLE :: Channel_Index(:)
END TYPE CRTM_ChannelInfo_type

'L
'L

Figure A.1: CRTM_Channellnfo_type structure definition.

A.1.1 CRTM ChannelInfo_Associated interface

NAME:
CRTM_ChannelInfo_Associated

PURPOSE:

Elemental function to test the status of the allocatable components

of a CRTM Channellnfo object.

CALLING SEQUENCE:
Status = CRTM_ChannelInfo_Associated(ChannellInfo)

0BJECTS:
ChannelInfo: ChannellInfo object which is to have its member’s
status tested.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the ChannellInfo members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input ChannelInfo argument

32

A.1.2 CRTM_ChannelInfo_DefineVersion interface
NAME:
CRTM_ChannelInfo_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_ChannelInfo_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.1.3 CRTM_ChannellInfo_Destroy interface
NAME:
CRTM_ChannelInfo_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM ChannelInfo objects.

CALLING SEQUENCE:
CALL CRTM_ChannelInfo_Destroy(ChannelInfo)

OBJECTS:
ChannelInfo: Re-initialized ChannelInfo object.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(QUT)

A.1.4 CRTM_ChannellInfo_Inspect interface
NAME :
CRTM_ChannelInfo_Inspect
PURPOSE:

Subroutine to print the contents of a CRTM ChannelInfo object
to stdout.

33

CALLING SEQUENCE:
CALL CRTM_ChannelInfo_Inspect(ChannelInfo)

INPUTS:
ChannelInfo: ChannelInfo object to display.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.1.5 CRTM_ChannelInfo_n_Channels interface

NAME:
CRTM_ChannelInfo_n_Channels

PURPOSE:
Function to return the number of channels defined in a Channellnfo
structure or structure array

CALLING SEQUENCE:
n_Channels = CRTM_ChannelInfo_n_Channels(ChannelInfo)

INPUTS:
ChannelInfo: ChannellInfo structure or structure which is to have its
channels counted.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)
DIMENSION: Scalar
or

Rank-1

ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

n_Channels: The number of defined channels in the input argument.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar

34

A.2 Atmosphere Structure

TYPE :: CRTM_Atmosphere_type
! Allocation indicator

LOGICAL :: Is_Allocated = .FALSE.

! Dimension values

INTEGER :: Max_Layers 0 ! K dimension
INTEGER :: n_Layers = 0 ! Kuse dimension
INTEGER :: n_Absorbers = 0 ! J dimension
INTEGER :: Max_Clouds =0 ! Nc dimension
INTEGER :: n_Clouds = 0 ! NcUse dimension
INTEGER :: Max_Aerosols = 0 ! Na dimension
INTEGER :: n_Aerosols = 0 ! NaUse dimension

! Number of added layers

INTEGER :: n_Added_Layers = O

! Climatology model associated with the profile
INTEGER :: Climatology = US_STANDARD_ATMOSPHERE
! Absorber ID and units

INTEGER, ALLOCATABLE :: Absorber_ID(:) rJ
INTEGER, ALLOCATABLE :: Absorber_Units(:) ! J

! Profile LEVEL and LAYER quantities

REAL(fp), ALLOCATABLE :: Level_Pressure(:) ! 0:K
REAL(fp), ALLOCATABLE :: Pressure(:) ' K
REAL(fp), ALLOCATABLE :: Temperature(:) ' K
REAL(fp), ALLOCATABLE :: Absorber(:,:) 'KxJ

! Clouds associated with each profile

TYPE(CRTM_Cloud_type), ALLOCATABLE :: Cloud(:) I Nc

! Aerosols associated with each profile

TYPE(CRTM_Aerosol_type), ALLOCATABLE :: Aerosol(:) ! Na
END TYPE CRTM_Atmosphere_type

Figure A.2: CRTM_Atmosphere_type structure definition.

35

Climatology Type

Parameter

Tropical
Midlatitude summer
Midlatitude winter
Subarctic summer
Subarctic winter
U.S. Standard Atmosphere

TROPICAL
MIDLATITUDE_SUMMER
MIDLATITUDE_WINTER
SUBARCTIC_SUMMER
SUBARCTIC_WINTER
US_STANDARD_ATMOSPHERE

Table A.1: CRTM Atmosphere structure valid Climatology definitions. The same set as defined

for LBLRTM is used.

Molecule Parameter Molecule Parameter
H>O H20_ID HI HI_ID
COq C02_ID Cl10 C10_ID

O3 03_ID OCS 0CS_ID
N-O N20_ID H,CO H2CO0_ID
CcO CO_ID HOCI HOC1_ID
CH, CH4_ID N, N2_ID
O 02_ID HCN HCN_ID
NO NO_ID CHsl CH31_ID
SO, S02_ID H509 H202_ID
NO, N02_ID CoH, C2H2_ID
NH; NH3_ID CoHg C2H6_ID
HNO; HNO3_ID PH; PH3_ID

OH OH_ID COF, COF2_1ID
HF HF_ID SFg SF6_ID
HCI HC1_ID H-S H2S_ID
HBr HBr_ID HCOOH HCOOH_ID

Table A.2: CRTM Atmosphere structure valid Absorber_ID definitions. The same molecule set

as defined for HITRAN is used.

Units

Parameter

Volume mixing ratio, ppmv
Number density, cm ™3
Mass mixing ratio, g/kg
Mass density, g.m >
Partial pressure, hPa
Dewpoint temperature, K (H2O ONLY)
Dewpoint temperature, C (H,O ONLY)
Relative humidity, % (H2O ONLY)
Specific amount, g/g
Integrated path, mm

VOLUME_MIXING_RATIO_UNITS
NUMBER_DENSITY_UNITS
MASS_MIXING_RATIO_UNITS
MASS_DENSITY_UNITS
PARTIAL_PRESSURE_UNITS
DEWPOINT_TEMPERATURE_K_UNITS
DEWPOINT_TEMPERATURE_C_UNITS
RELATIVE_HUMIDITY_UNITS
SPECIFIC_AMOUNT_UNITS
INTEGRATED_PATH_UNITS

Table A.3: CRTM Atmosphere structure valid Absorber Units definitions.

defined for LBLRTM is used.

36

The same set as

A.2.1 CRTM_Atmosphere_AddLayerCopy interface

NAME:
CRTM_Atmosphere_AddLayerCopy

PURPOSE:
Elemental function to copy an instance of the CRTM Atmosphere object
with additional layers added to the TOA of the input.

CALLING SEQUENCE:
Atm_out = CRTM_Atmosphere_AddLayerCopy(Atm, n_Added_Layers)

0BJECTS:
Atm: Atmosphere structure to copy.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Added_Layers: Number of layers to add to the function result.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Atm_out: Copy of the input atmosphere structure with space for
extra layers added to TOA.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Same as input.
ATTRIBUTES: INTENT(OUT)

A.2.2 CRTM_Atmosphere_Associated interface

NAME:
CRTM_Atmosphere_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM Atmosphere object.

CALLING SEQUENCE:
Status = CRTM_Atmosphere_Associated(Atm)

OBJECTS:

Atm: Atmosphere structure which is to have its member’s
status tested.

37

UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the Atmosphere members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input

A.2.3 CRTM_Atmosphere_Compare interface

NAME:
CRTM_Atmosphere_Compare

PURPOSE:
Elemental function to compare two CRTM_Atmosphere objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Atmosphere_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM Atmosphere objects to be compared.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.2.4 CRTM_Atmosphere _Create interface

38

NAME:
CRTM_Atmosphere_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Atmosphere object.

CALLING SEQUENCE:

CALL CRTM_Atmosphere_Create(Atm , &
n_Layers , &
n_Absorbers, &
n_Clouds , &
n_Aerosols)

OBJECTS:
Atm: Atmosphere structure.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Layers: Number of layers dimension.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

n_Absorbers: Number of absorbers dimension.

Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

n_Clouds: Number of clouds dimension.
Can be = 0 (i.e. clear sky).
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

n_Aerosols: Number of aerosols dimension.
Can be = 0 (i.e. no aerosols).
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

39

A.2.5 CRTM_Atmosphere DefineVersion interface

NAME:
CRTM_Atmosphere_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.2.6 CRTM_Atmosphere_Destroy interface
NAME:
CRTM_Atmosphere_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Atmosphere objects.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_Destroy(Atm)

0BJECTS:
Atm: Re-initialized Atmosphere structure.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QUT)

A.2.7 CRTM_Atmosphere_Inspect interface

NAME:
CRTM_Atmosphere_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Atmosphere object to stdout.

CALLING SEQUENCE:

40

CALL CRTM_Atmosphere_Inspect(Atm)

INPUTS:
Atm: CRTM Atmosphere object to display.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.2.8 CRTM_Atmosphere_IsValid interface
NAME:
CRTM_Atmosphere_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Atmosphere object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Atmosphere_IsValid(Atm)

or

IF (CRTM_Atmosphere_IsValid(Atm)) THEN....

0BJECTS:
Atm: CRTM Atmosphere object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Atmosphere object is unused or contains

invalid data.
== .TRUE., Atmosphere object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.2.9 CRTM_Atmosphere_Zero interface

41

NAME:
CRTM_Atmosphere_Zero

PURPOSE:
Elemental subroutine to zero out the data arrays
in a CRTM Atmosphere object.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_Zero(Atm)

OUTPUTS:
Atm: CRTM Atmosphere structure in which the data arrays

are to be zeroed out.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS :

- The dimension components of the structure are *NOT* set to zero.
- The Climatology, Absorber_ID, and Absorber_Units components are
NOT reset in this routine.

A.2.10 CRTM_Atmosphere_I0Version interface
NAME:
CRTM_Atmosphere_IOVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_IOVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

A.2.11 CRTM_Atmosphere_InquireFile interface

NAME:
CRTM_Atmosphere_InquireFile

42

PURPOSE:
Function to inquire CRTM Atmosphere object files.

CALLING SEQUENCE:
Error_Status = CRTM_Atmosphere_InquireFile(Filename , &
n_Channels = n_Channels, &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM Atmosphere data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_Channels: The number of spectral channels for which there is
data in the file. Note that this value will always
be 0 for a profile-only dataset-- it only has meaning
for K-matrix data.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

n_Profiles: The number of profiles in the data file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.2.12 CRTM Atmosphere ReadFile interface

NAME:
CRTM_Atmosphere_ReadFile

PURPOSE:
Function to read CRTM Atmosphere object files.

CALLING SEQUENCE:

43

Error_Status = CRTM_Atmosphere_ReadFile(Filename , &
Atmosphere , &
Quiet = Quiet , &
n_Channels = n_Channels , &
n_Profiles = n_Profiles , &
INPUTS:
Filename: Character string specifying the name of an
Atmosphere format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:

Atmosphere: CRTM Atmosphere object array containing the Atmosphere
data. Note the following meanings attributed to the
dimensions of the object array:

Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the structure is understood to
be the PROFILE dimension.

Rank-2: L channels x M profiles
Channel and profile data are to be read in.
The file contains both channel and profile
information. The first dimension of the
structure is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Rank-1 (M) or Rank-2 (L x M)

ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:
n_Channels: The number of channels for which data was read. Note that
this value will always be O for a profile-only dataset--
it only has meaning for K-matrix data.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

44

n_Profiles:

FUNCTION RESULT:
Error_Status:

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The number of profiles for which data was read.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.2.13 CRTM_Atmosphere_WriteFile interface

NAME:

CRTM_Atmosphere_WriteFile

PURPOSE:

Function to write CRTM Atmosphere object files.

CALLING SEQUENCE:
Error_Status

INPUTS:
Filename:

Atmosphere:

= CRTM_Atmosphere_WriteFile(Filename , &
Atmosphere , &
Quiet = Quiet)

Character string specifying the name of the
Atmosphere format data file to write.
UNITS: N/A

TYPE: CHARACTER ()

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Atmosphere object array containing the Atmosphere
data. Note the following meanings attributed to the
dimensions of the Atmosphere array:
Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the array is understood to
be the PROFILE dimension.
Rank-2: L channels x M profiles
Channel and profile data are to be read in.
The file contains both channel and profile

45

OPTIONAL INPUTS:
Quiet:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

information. The first dimension of the
array is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Rank-1 (M) or Rank-2 (L x M)

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

- If the output file already exists, it is overwritten.
- If an error occurs during *writing#*, the output file is deleted before
returning to the calling routine.

46

A.3 Cloud Structure

TYPE :: CRTM_Cloud_type
! Allocation indicator
LOGICAL :: Is_Allocated
! Dimension values
INTEGER :: Max_Layers =
INTEGER :: n_Layers
! Number of added layers
INTEGER :: n_Added_Layers = 0O
! Cloud type
INTEGER :: Type = INVALID_CLOUD
! Cloud state variables

.FALSE.

]
o O

END TYPE CRTM_Cloud_type

I K dimension.
! Kuse dimension.

REAL(fp), ALLOCATABLE :: Effective_Radius(:) ! K. Units are microns
REAL(fp), ALLOCATABLE :: Effective_Variance(:) ! K. Units are microns~2
REAL(fp), ALLOCATABLE :: Water_Content(:)

I K. Units are kg/m"2

Figure A.3: CRTM_Cloud_type structure definition.

Cloud Type Parameter
Water WATER_CLOUD
Ice ICE_CLOUD
Rain RAIN_CLOUD
Snow SNOW_CLOUD
Graupel GRAUPEL _CLOUD
Hail HAIL_CLOUD

Table A.4: CRTM Cloud structure valid Type definitions.

47

A.3.1 CRTM_Cloud_AddLayerCopy interface

NAME:
CRTM_Cloud_AddLayerCopy

PURPOSE:
Elemental function to copy an instance of the CRTM Cloud object
with additional layers added to the TOA of the input.

CALLING SEQUENCE:
cld_out = CRTM_Cloud_AddLayerCopy(cld, n_Added_Layers)

0BJECTS:
cld: Cloud structure to copy.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Added_Layers: Number of layers to add to the function result.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Cloud object
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
cld_out: Copy of the input Cloud structure with space for
extra layers added to TOA.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Same as input.
ATTRIBUTES: INTENT(OUT)

A.3.2 CRTM Cloud_Associated interface

NAME:
CRTM_Cloud_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM Cloud object.

CALLING SEQUENCE:
Status = CRTM_Cloud_Associated(Cloud)

OBJECTS:

Cloud: Cloud structure which is to have its member’s
status tested.

48

UNITS: N/A

TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating the
status of the Cloud members.

.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input Cloud argument

A.3.3 CRTM_Cloud_Compare interface

NAME:
CRTM_Cloud_Compare

PURPOSE:
Elemental function to compare two CRTM_Cloud objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Cloud_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM Cloud objects to be compared.
UNITS: N/A
TYPE: CRTM_Cloud_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.3.4 CRTM Cloud_Create interface

49

NAME:
CRTM_Cloud_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Cloud object.

CALLING SEQUENCE:
CALL CRTM_Cloud_Create(Cloud, n_Layers)

OBJECTS:
Cloud: Cloud structure.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Layers: Number of layers for which there is cloud data.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Cloud object
ATTRIBUTES: INTENT(IN)

A.3.5 CRTM_Cloud_DefineVersion interface
NAME :
CRTM_Cloud_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Cloud_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.3.6 CRTM_Cloud Destroy interface

NAME:
CRTM_Cloud_Destroy

50

PURPOSE:
Elemental subroutine to re-initialize CRTM Cloud objects.

CALLING SEQUENCE:
CALL CRTM_Cloud_Destroy(Cloud)

OBJECTS:
Cloud: Re-initialized Cloud structure.
UNITS: N/A
TYPE: CRTM_Cloud_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(QOUT)

A.3.7 CRTM_Cloud_Inspect interface
NAME:
CRTM_Cloud_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Cloud object to stdout.

CALLING SEQUENCE:
CALL CRTM_Cloud_Inspect(Cloud)

INPUTS:
Cloud: CRTM Cloud object to display.
UNITS: N/A
TYPE: CRTM_Cloud_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.3.8 CRTM_Cloud_IsValid interface
NAME:
CRTM_Cloud_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Cloud object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Cloud_IsValid(cloud)

or

51

IF (CRTM_Cloud_IsValid(cloud)) THEN....

OBJECTS:
cloud: CRTM Cloud object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Cloud_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Cloud object is unused or contains
invalid data.
== .TRUE., Cloud object can be used in CRTM.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.3.9 CRTM_Cloud_Zero interface
NAME:
CRTM_Cloud_Zero

PURPOSE:
Elemental subroutine to zero out the data arrays in a CRTM Cloud object.

CALLING SEQUENCE:
CALL CRTM_Cloud_Zero(Cloud)

0BJECTS:
Cloud: CRTM Cloud structure in which the data arrays are

to be zeroed out.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS :

- The dimension components of the structure are *NOT* set to zero.
- The cloud type component is *NOT* reset.

A.3.10 CRTM _Cloud_IOVersion interface

NAME:

52

CRTM_Cloud_IOVersion

PURPOSE:

Subroutine to return the module version information.

CALLING SEQUENCE:

CALL CRTM_Cloud_IQOVersion(Id)

OUTPUT ARGUMENTS:
Id:

Character string containing the version Id information
for the module.

UNITS: N/A

TYPE: CHARACTER, (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(QUT)

A.3.11 CRTM_Cloud_InquireFile interface

NAME:

CRTM_Cloud_InquireFile

PURPOSE:

Function to inquire CRTM Cloud object files.

CALLING SEQUENCE:

Error_Status =

INPUTS:
Filename:

OPTIONAL OUTPUTS:
n_Clouds:

FUNCTION RESULT:

Error_Status:

CRTM_Cloud_InquireFile(Filename , &
n_Clouds = n_Clouds)

Character string specifying the name of a
CRTM Cloud data file to read.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The number of Cloud profiles in the data file.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(QUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER

53

DIMENSION: Scalar

A.3.12 CRTM Cloud_ReadFile interface

NAME:
CRTM_Cloud_ReadFile

PURPOSE:
Function to read CRTM Cloud object files.

CALLING SEQUENCE:

Error_Status = CRTM_Cloud_ReadFile(Filename , &
Cloud , &
Quiet = Quiet , &
No_Close = No_Close, &
n_Clouds = n_Clouds)
INPUTS:
Filename: Character string specifying the name of a
Cloud format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
Cloud: CRTM Cloud object array containing the Cloud data.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Rank-1
ATTRIBUTES: INTENT(OUT)
OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].

== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

No_Close: Set this logical argument to NOT close the file upon exit.
If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

54

OPTIONAL OUTPUTS:
n_Clouds:

FUNCTION RESULT:

Error_Status:

ATTRIBUTES: INTENT(IN), OPTIONAL

The actual number of cloud profiles read in.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.3.13 CRTM Cloud_WriteFile interface

NAME:

CRTM_Cloud_WriteFile

PURPOSE:

Function to write CRTM Cloud object files.

CALLING SEQUENCE:

Error_Status = CRTM_Cloud_WriteFile(Filename , &
Cloud , &
Quiet = Quiet , &
No_Close = No_Close)

INPUTS:
Filename:

Cloud:

OPTIONAL INPUTS:
Quiet:

Character string specifying the name of the
Cloud format data file to write.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Cloud object array containing the Cloud data.
UNITS: N/A

TYPE: CRTM_Cloud_type

DIMENSION: Rank-1

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].

95

No_Close:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

- If the output file already exists, it is overwritten.
- If an error occurs during *writing#*, the output file is deleted before
returning to the calling routine.

56

A.4 Aerosol Structure

TYPE :: CRTM_Aerosol_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimension values
INTEGER :: Max_Layers =
INTEGER :: n_Layers
! Number of added layers
INTEGER :: n_Added_Layers = 0O
! Aerosol type
INTEGER :: Type = INVALID_AEROSOL
! Aerosol state variables
REAL(fp), ALLOCATABLE :: Effective_Radius(:) ! K. Units are microns
REAL(fp), ALLOCATABLE :: Concentration(:) ! K. Units are kg/m"2
END TYPE CRTM_Aerosol_type

o

I K dimension.
! Kuse dimension

1]
o

Figure A.4: CRTM_Aerosol_type structure definition.

Aerosol Type Parameter refs Range (pum)
Dust DUST_AEROSOL 0.01-8

Sea salt SSAM ~ SEASALT_SSAM_AEROSOL 0.3 -1.45

Sea salt SSCM1 SEASALT_SSCM1_AEROSOL 1.0 - 4.8

Sea salt SSCM2 SEASALT_SSCM2_AEROSOL 3.25-17.3

Sea salt SSCM3 SEASALT_SSCM3_AEROSOL 7.5 -89

Organic carbon ORGANIC_CARBON_AEROSOL 0.09 - 0.21
Black carbon BLACK_CARBON_AEROSOL 0.036 - 0.074
Sulfate SULFATE_AEROSOL 0.24 - 0.8

Table A.5: CRTM Aerosol structure valid Type definitions and effective radii. SSAM = Sea Salt
Accumulation Mode, SSCM = Sea Salt Coarse Mode.

o7

A.4.1 CRTM_Aerosol_AddLayerCopy interface

NAME:
CRTM_Aerosol_AddLayerCopy

PURPOSE:
Elemental function to copy an instance of the CRTM Aerosol object
with additional layers added to the TOA of the input.

CALLING SEQUENCE:
aer_out = CRTM_Aerosol_AddLayerCopy(aer, n_Added_Layers)

0BJECTS:
aer: Aerosol structure to copy.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Added_Layers: Number of layers to add to the function result.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Aerosol object
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
aer_out: Copy of the input Aerosol structure with space for
extra layers added to TOA.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Same as input.
ATTRIBUTES: INTENT(OUT)

A.4.2 CRTM Aerosol_Associated interface

NAME:
CRTM_Aerosol_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM Aerosol object.

CALLING SEQUENCE:
Status = CRTM_Aerosol_Associated(Aerosol)

OBJECTS:

Aerosol: Aerosol structure which is to have its member’s
status tested.

o8

UNITS:
TYPE:

DIMENSION:
ATTRIBUTES:

FUNCTION RESULT:

N/A

CRTM_Aerosol_type

Scalar or any rank
INTENT (IN)

Status: The return value is a logical value indicating the
status of the Aerosol members.

.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Same as input Aerosol argument

A.4.3 CRTM_Aerosol_Compare interface

NAME:

CRTM_Aerosol_Compare

PURPOSE:

Elemental function to compare two CRTM_Aerosol objects to within
a user specified number of significant figures.

CALLING SEQUENCE:

is_comparable = CRTM_Aerosol_Compare(x, y, n_SigFig=n_SigFig)

OBJECTS:
X, y:

OPTIONAL INPUTS:
n_SigFig:

FUNCTION RESULT:
is_equal:

Two CRTM Aerosol objects to be compared.

UNITS:
TYPE:
DIMENSION:
ATTRIBUTES:

N/A
CRTM_Aerosol_type
Scalar or any rank
INTENT (IN)

Number of significant figure to compare floating point

components.
UNITS:
TYPE:
DIMENSION:
ATTRIBUTES:

N/A

INTEGER

Scalar or same as input
INTENT(IN), OPTIONAL

Logical value indicating whether the inputs are equal.

UNITS:
TYPE:
DIMENSION:

N/A
LOGICAL
Same as inputs.

A.4.4 CRTM Aerosol_Create interface

99

NAME:
CRTM_Aerosol_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Aerosol object.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Create(Aerosol, n_Layers)

OBJECTS:
Aerosol: Aerosol structure.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Layers: Number of layers for which there is Aerosol data.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Aerosol object
ATTRIBUTES: INTENT(IN)

A.4.5 CRTM Aerosol_DefineVersion interface

NAME:
CRTM_Aerosol_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Aerosol_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.4.6 CRTM_Aerosol Destroy interface

NAME:
CRTM_Aerosol_Destroy

60

PURPOSE:
Elemental subroutine to re-initialize CRTM Aerosol objects.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Destroy(Aerosol)

OBJECTS:
Aerosol: Re-initialized Aerosol structure.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(QOUT)

A.4.7 CRTM_Aerosol_Inspect interface
NAME:
CRTM_Aerosol_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Aerosol object to stdout.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Inspect(Aerosol)

INPUTS:
Aerosol: CRTM Aerosol object to display.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.4.8 CRTM_Aerosol_IsValid interface
NAME:
CRTM_Aerosol_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Aerosol object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Aerosol_IsValid(Aerosol)

or

61

IF (CRTM_Aerosol_IsValid(Aerosol)) THEN....

OBJECTS:
Aerosol: CRTM Aerosol object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Aerosol object is unused or contains

invalid data.
== .TRUE., Aerosol object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.4.9 CRTM_Aerosol_Zero interface
NAME:
CRTM_Aerosol_Zero

PURPOSE:
Elemental subroutine to zero out the data arrays in a CRTM Aerosol object.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Zero(Aerosol)

0BJECTS:
Aerosol: CRTM Aerosol object in which the data arrays are

to be zeroed out.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS:

- The dimension components of the structure are *NOT* set to zero.
- The Aerosol type component is *NOT* reset.

A.4.10 CRTM Aerosol_I0Version interface

NAME:

62

CRTM_Aerosol_IOVersion

PURPOSE:

Subroutine to return the module version information.

CALLING SEQUENCE:

CALL CRTM_Aerosol_IOVersion(Id)

OUTPUT ARGUMENTS:

Id: Character string containing the version Id information
for the module.

UNITS:
TYPE:

DIMENSION:

N/A
CHARACTER (%)
Scalar

ATTRIBUTES: INTENT(OUT)

A.4.11 CRTM Aerosol_InquireFile interface

NAME:

CRTM_Aerosol_InquireFile

PURPOSE:

Function to inquire CRTM Aerosol object files.

CALLING SEQUENCE:

Error_Status = CRTM_Aerosol_InquireFile(Filename , &

INPUTS:
Filename:

OPTIONAL OUTPUTS:
n_Aerosols:

FUNCTION RESULT:

Error_Status:

n_Aerosols = n_Aerosols)

Character string specifying the name of a
CRTM Aerosol data file to read.

UNITS: N/A

TYPE: CHARACTER (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The number of Aerosol profiles in the data file.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(QUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER

63

DIMENSION: Scalar

A.4.12 CRTM Aerosol_ReadFile interface

NAME:
CRTM_Aerosol_ReadFile

PURPOSE:
Function to read CRTM Aerosol object files.

CALLING SEQUENCE:

Error_Status = CRTM_Aerosol_ReadFile(Filename , &
Aerosol , &
Quiet = Quiet , &
No_Close = No_Close , &
n_Aerosols = n_Aerosols)
INPUTS:
Filename: Character string specifying the name of a
Aerosol format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
Aerosol: CRTM Aerosol object array containing the aerosol data.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Rank-1
ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

No_Close: Set this logical argument to NOT close the file upon exit.
If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

64

ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

n_Aerosols: The actual number of aerosol profiles read in.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.4.13 CRTM Aerosol_WriteFile interface

NAME:
CRTM_Aerosol_WriteFile

PURPOSE:
Function to write CRTM Aerosol object files.

CALLING SEQUENCE:

Error_Status = CRTM_Aerosol_WriteFile(Filename , &
Aerosol , &
Quiet = Quiet , &
No_Close = No_Close)
INPUTS:
Filename: Character string specifying the name of the
Aerosol format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
Aerosol: CRTM Aerosol object array containing the Aerosol data.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Rank-1
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].

65

No_Close:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

- If the output file already exists, it is overwritten.
- If an error occurs during *writing#*, the output file is deleted before
returning to the calling routine.

66

A.5 Surface Structure

TYPE :: CRTM_Surface_type
! Allocation indicator
LOGICAL :: Is_Allocated = .TRUE. ! Placeholder for future expansion
! Dimension values
! ...None yet
! Gross type of surface determined by coverage
REAL(fp) :: Land_Coverage = ZERO

REAL(fp) :: Water_Coverage = ZERO

REAL(fp) :: Snow_Coverage = ZERO

REAL(fp) :: Ice_Coverage = ZERO

! Land surface type data

INTEGER :: Land_Type = DEFAULT_LAND_TYPE
REAL(fp) :: Land_Temperature = DEFAULT_LAND_TEMPERATURE

REAL(fp) :: Soil_Moisture_Content = DEFAULT_SOIL_MOISTURE_CONTENT
REAL(fp) :: Canopy_Water_Content = DEFAULT_CANOPY_WATER_CONTENT

REAL(fp) :: Vegetation_Fraction = DEFAULT_VEGETATION_FRACTION
REAL(fp) :: Soil_Temperature = DEFAULT_SOIL_TEMPERATURE

! Water type data

INTEGER :: Water_Type = DEFAULT_WATER_TYPE

REAL(fp) :: Water_Temperature = DEFAULT_WATER_TEMPERATURE
REAL(fp) :: Wind_Speed = DEFAULT_WIND_SPEED

REAL(fp) :: Wind_Direction = DEFAULT_WIND_DIRECTION

REAL(fp) :: Salinity = DEFAULT_SALINITY

! Snow surface type data

INTEGER :: Snow_Type = DEFAULT_SNOW_TYPE

DEFAULT_SNOW_TEMPERATURE
DEFAULT_SNOW_DEPTH
DEFAULT_SNOW_DENSITY
DEFAULT_SNOW_GRAIN_SIZE

REAL(fp) :: Snow_Temperature
REAL(fp) :: Snow_Depth
REAL(fp) :: Snow_Density
REAL(fp) :: Snow_Grain_Size
! Ice surface type data
INTEGER :: Ice_Type
REAL(fp) :: Ice_Temperature
REAL(fp) :: Ice_Thickness
REAL(fp) :: Ice_Density DEFAULT_ICE_DENSITY
REAL(fp) :: Ice_Roughness DEFAULT_ICE_ROUGHNESS
! SensorData containing channel brightness temperatures
TYPE(CRTM_SensorData_type) :: SensorData

END TYPE CRTM_Surface_type

DEFAULT_ICE_TYPE
DEFAULT_ICE_TEMPERATURE
DEFAULT_ICE_THICKNESS

Figure A.5: CRTM Surface_type structure definition.

67

Component Description Units Dimensions
n_Sensors The number of sensors for which data is pro- N/A Scalar
vided inside the SensorData structure
Land_Coverage Fraction of the FOV that is land surface N/A Scalar
Water_Coverage Fraction of the FOV that is water surface N/A Scalar
Snow_Coverage Fraction of the FOV that is snow surface N/A Scalar
Ice_Coverage Fraction of the FOV that is ice surface N/A Scalar
Wind_Speed Surface wind speed m.s 1 Scalar
Wind Direction Surface wind direction deg. E from N Scalar
Land_Type Land surface type N/A Scalar
Land _Temperature Land surface temperature Kelvin Scalar
Soil Moisture_Content Volumetric water content of the soil g.cm™3 Scalar
Canopy-Water_Content Gravimetric water content of the canopy g.cm™3 Scalar
Vegetation_Fraction Vegetation fraction of the surface % Scalar
Soil_Temperature Soil temperature Kelvin Scalar
Water_Type Water surface type N/A Scalar
Water_Temperature Water surface temperature Kelvin Scalar
Salinity Water salinity Yoo Scalar
Snow_Type Snow surface type N/A Scalar
Snow_Temperature Snow surface temperature Kelvin Scalar
Snow_Depth Snow depth mm Scalar
Snow_Density Snow density gm™3 Scalar
Snow_Grain_Size Snow grain size mm Scalar
Ice_Type Ice surface type N/A Scalar
Ice_Temperature Ice surface temperature Kelvin Scalar
Ice_Thickness Thickness of ice mm Scalar
Ice Density Density of ice gm™3 Scalar
Ice_Roughness Measure of the surface roughness of the ice N/A Scalar
SensorData Satellite sensor data required for some surface N/A Scalar

emissivity algorithms

Table A.6: CRTM Surface structure component description.

68

Parameter Value Units
Surface type independent data
DEFAULT _WIND_SPEED 5.0 m.s !
DEFAULT _WIND_DIRECTION 0.0 deg. E from N
Land surface type data
DEFAULT_LAND_TYPE GRASS_SOIL N / A
DEFAULT_LAND_TEMPERATURE 283.0 K
DEFAULT _SOIL_MOISTURE_CONTENT 0.05 g.(‘,m*3
DEFAULT_CANOPY_WATER_CONTENT 0.05 g.cmfg’
DEFAULT _VEGETATION_FRACTION 0.3 30%
DEFAULT_SOIL_TEMPERATURE 283.0 K
Water type data
DEFAULT _WATER_TYPE SEA_WATER N / A
DEFAULT _WATER_TEMPERATURE 283.0 K
DEFAULT_SALINITY 33.0 ppmv
Snow surface type data
DEFAULT_SNOW_TYPE NEW_SNOW N/A
DEFAULT_SNOW_TEMPERATURE 263.0 K
DEFAULT_SNOW_DEPTH 50.0 mm
DEFAULT_SNOW_DENSITY 0.2 g.cm_3
DEFAULT_SNOW_GRAIN_SIZE 2.0 mm
Ice surface type data
DEFAULT_ICE_TYPE FRESH_ICE N/A
DEFAULT_ICE_TEMPERATURE 263.0 K
DEFAULT_ICE_THICKNESS 10.0 min
DEFAULT_ICE_DENSITY 0.9 g.cm_3
DEFAULT_ICE_ROUGHNESS 0.0 N/A

Table A.7: CRTM Surface structure default values.

69

Land Type

Parameter

Compacted soil
Tilled soil
Sand
Rock
Irrigated low vegetation
Meadow grass
Scrub
Broadleaf forest
Pine forest
Tundra
Grass-soil
Broadleaf-pine forest
Grass scrub
Soil-grass-scrub
Urban concrete
Pine brush
Broadleaf brush
Wet soil
Scrub-soil
Broadleaf(70)-Pine(30)

COMPACTED_SOIL
TILLED_SOIL

SAND

ROCK
TRRIGATED_LOW_VEGETATION
MEADOW_GRASS

SCRUB

BROADLEAF _FOREST
PINE_FOREST

TUNDRA

GRASS_SOIL

BROADLEAF _PINE_FOREST
GRASS_SCRUB
SOIL_GRASS_SCRUB
URBAN_CONCRETE
PINE_BRUSH
BROADLEAF_BRUSH
WET_SOIL

SCRUB_SOIL
BROADLEAF70_PINE30

Table A.8: CRTM Surface structure valid Land_Type definitions.

Water Type

Parameter

Sea water
Fresh water

SEA_WATER
FRESH_WATER

Table A.9: CRTM Surface structure valid Water_Type definitions.

Snow Type

Parameter

Wet snow
Grass after snow
Powder snow

Thin Crust snow
Thick crust snow
Shallow snow
Deep snow
Crust snow
Medium snow
Bottom crust snow(A)
Bottom crust snow(B)

WET_SNOW
GRASS_AFTER_SNOW
POWDER_SNOW
RS_SNOW_A

RS_SNOW_B

RS_SNOW_C

RS_SNOW_D

RS_SNOW_E
THIN_CRUST_SNOW
THICK_CRUST_SNOW
SHALLOW_SNOW
DEEP_SNOW
CRUST_SNOW
MEDIUM_SNOW
BOTTOM_CRUST_SNOW_A
BOTTOM_CRUST_SNOW_B

Table A.10: CRTM Surface structure valid Snow_Type definitions.

70

Ice Type Parameter

Fresh ice FRESH_ICE
First year sea ice FIRST_YEAR_SEA_ICE
Multiple year sea ice MULTI_YEAR_SEA_ICE
Ice floe ICE_FLOE
Ice ridge ICE_RIDGE

Table A.11: CRTM Surface structure valid Ice_Type definitions.

71

A.5.1 CRTM_Surface_Associated interface

NAME:
CRTM_Surface_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM Surface object.

CALLING SEQUENCE:
Status = CRTM_Surface_Associated(Sfc)

OBJECTS:
Sfc: Surface structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the Surface members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input

A.5.2 CRTM_Surface_Compare interface

NAME:
CRTM_Surface_Compare

PURPOSE:
Elemental function to compare two CRTM_Surface objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Surface_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM Surface objects to be compared.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.

72

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.5.3 CRTM_Surface_CoverageType interface

NAME:
CRTM_Surface_CoverageType

PURPOSE:
Elemental function to return the gross surface type based on coverage.

CALLING SEQUENCE:
type = CRTM_Surface_CoverageType(sfc)

INPUTS:
Sfc: CRTM Surface object for which the gross surface type is required.
UNITS: N/A
TYPE: CRTM_Surface_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)
FUNCTION:
type: Surface type indicator for the passed CRTM Surface object.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Same as input
COMMENTS:

For a scalar Surface object, this function result can be used to
determine what gross surface types are included by using it to
index the SURFACE_TYPE_NAME parameter arrays, e.g.

WRITE(*,*) SURFACE_TYPE_NAME(CRTM_Surface_CoverageType(sfc))

A.5.4 CRTM Surface_Create interface

NAME:
CRTM_Surface_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Surface object.

73

CALLING SEQUENCE:
CALL CRTM_Surface_Create(Sfc , &
n_Channels)

OBJECTS:
Sfc: Surface structure.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

INPUT ARGUMENTS:
n_Channels: Number of channels dimension of SensorData

substructure
** Note: Can be = 0 (i.e. no sensor data). *x*
UNITS: N/A
TYPE: INTEGER
DIMENSION: Same as Surface object
ATTRIBUTES: INTENT(IN)

A.5.5 CRTM_Surface_DefineVersion interface

NAME:
CRTM_Surface_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Surface_DefineVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (*)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.5.6 CRTM_Surface _Destroy interface

NAME:
CRTM_Surface_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Surface objects.

74

CALLING SEQUENCE:
CALL CRTM_Surface_Destroy(Sfc)

OBJECTS:
Sfc: Re-initialized Surface structure.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.5.7 CRTM_Surface_Inspect interface
NAME:
CRTM_Surface_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Surface object to stdout.

CALLING SEQUENCE:
CALL CRTM_Surface_Inspect(Sfc)

INPUTS:
Sfc: CRTM Surface object to display.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.5.8 CRTM_Surface_IsCoverageValid interface

NAME:
CRTM_Surface_IsCoverageValid

PURPOSE:
Function to determine if the coverage fractions are valid
for a CRTM Surface object.

CALLING SEQUENCE:
result = CRTM_Surface_IsCoverageValid(Sfc)

0BJECTS:
Sfc: CRTM Surface object which is to have its
coverage fractions checked.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar

75

ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Surface object coverage fractions are invalid.
== .TRUE., Surface object coverage fractions are valid.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.5.9 CRTM_Surface_IsValid interface

NAME:
CRTM_Surface_IsValid

PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Surface object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Surface_IsValid(Sfc)

or

IF (CRTM_Surface_IsValid(Sfc)) THEN....

0BJECTS:
Sfc: CRTM Surface object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Surface object is unused or contains

invalid data.
== .TRUE., Surface object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

76

A.5.10 CRTM_Surface_Zero interface

NAME:
CRTM_Surface_Zero

PURPOSE:
Elemental subroutine to zero out the data arrays
in a CRTM Surface object.

CALLING SEQUENCE:
CALL CRTM_Surface_Zero(Sfc)

OUTPUT ARGUMENTS:
Sfc: CRTM Surface structure in which the data arrays
are to be zeroed out.
UNITS: N/A
TYPE: CRTM_Surface_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS :

- The various surface type indicator flags are
NOT reset in this routine.

A.5.11 CRTM_Surface_I0OVersion interface
NAME:
CRTM_Surface_I0Version

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Surface_IOVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.5.12 CRTM_Surface_InquireFile interface

NAME:

T

CRTM_Surface_InquireFile

PURPOSE:

Function to inquire CRTM Surface object files.

CALLING SEQUENCE:

Error_Status = CRTM_Surface_InquireFile(Filename , &

INPUTS:
Filename:

OPTIONAL OUTPUTS:
n_Channels:

n_Profiles:

FUNCTION RESULT:

Error_Status:

= n_Channels, &
n_Profiles)

n_Channels
n_Profiles

Character string specifying the name of a
CRTM Surface data file to read.

UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The number of spectral channels for which there is
data in the file. Note that this value will always

be 0 for a profile-only dataset-- it only has meaning
for K-matrix data.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The number of profiles in the data file.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OQUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.5.13 CRTM_Surface_ReadFile interface

NAME:

CRTM_Surface_ReadFile

PURPOSE:

Function to read CRTM Surface object files.

78

CALLING SEQUENCE:

Error_Status = CRTM_Surface_ReadFile(Filename , &
Surface , &
Quiet = Quiet , &
n_Channels = n_Channels , &
n_Profiles = n_Profiles , &
INPUTS:
Filename: Character string specifying the name of an
Surface format data file to read.
UNITS: N/A
TYPE: CHARACTER ()
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
Surface: CRTM Surface object array containing the Surface

data. Note the following meanings attributed to the

dimensions of the object array:

Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the structure is understood to
be the PROFILE dimension.

Rank-2: L channels x M profiles
Channel and profile data are to be read in.
The file contains both channel and profile
information. The first dimension of the
structure is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Rank-1 (M) or Rank-2 (L x M)

ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:
n_Channels: The number of channels for which data was read. Note that
this value will always be O for a profile-only dataset--
it only has meaning for K-matrix data.
UNITS: N/A

79

n_Profiles:

FUNCTION RESULT:
Error_Status:

TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

The number of profiles for which data was read.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.5.14 CRTM_Surface_WriteFile interface

NAME:

CRTM_Surface_

PURPOSE:

WriteFile

Function to write CRTM Surface object files.

CALLING SEQUENCE:
Error_Status

INPUTS:
Filename:

Surface:

= CRTM_Surface_WriteFile(Filename , &
Surface , &
Quiet = Quiet)

Character string specifying the name of the
Surface format data file to write.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Surface object array containing the Surface
data. Note the following meanings attributed to the
dimensions of the Surface array:
Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the array is understood to
be the PROFILE dimension.
Rank-2: L channels x M profiles

80

OPTIONAL INPUTS:
Quiet:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

Channel and profile data are to be read in.
The file contains both channel and profile
information. The first dimension of the
array is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Rank-1 (M) or Rank-2 (L x M)

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before

returning to the calling routine.

81

A.6 SensorData Structure

TYPE :: CRTM_SensorData_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimension values
INTEGER :: n_Channels = 0 ! L
! The data sensor IDs
CHARACTER (STRLEN) :: Sensor_Id =70

INTEGER :: WMO_Satellite_ID = INVALID_WMO_SATELLITE_ID
INTEGER :: WMO_Sensor_ID = INVALID_WMO_SENSOR_ID

! The sensor channels and brightness temperatures

INTEGER , ALLOCATABLE :: Sensor_Channel(:) I L

REAL (fp), ALLOCATABLE :: Tb(:) 'L

END TYPE CRTM_SensorData_type

Figure A.6: CRTM_SensorData_type structure definition.

Component Description Units Dimensions
n_Channels Number of channels to use in SfcOptics emis- N/A Scalar
sivty algorithms (L)

Sensor_Id The sensor id N/A Scalar
WMO_Satellite.Id The WMO satellite Id N/A Scalar
WMO_Sensor_Id The WMO sensor Id N/A Scalar
Sensor_Channel The channel numbers N/A L

Tb The brightness temperature measurements for Kelvin L

each channel

Table A.12: CRTM SensorData structure component description.

82

A.6.1 CRTM_SensorData_Associated interface

NAME:
CRTM_SensorData_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM SensorData object.

CALLING SEQUENCE:
Status = CRTM_SensorData_Associated(SensorData)

OBJECTS:
SensorData: SensorData structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the SensorData members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input SensorData argument

A.6.2 CRTM_SensorData_Compare interface

NAME:
CRTM_SensorData_Compare

PURPOSE:
Elemental function to compare two CRTM_SensorData objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_SensorData_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM SensorData objects to be compared.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.

83

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.6.3 CRTM_SensorData_Create interface
NAME:
CRTM_SensorData_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM SensorData object.

CALLING SEQUENCE:
CALL CRTM_SensorData_Create(SensorData, n_Channels)

OBJECTS:
SensorData: SensorData structure.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Channels: Number of sensor channels.
Must be > 0.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as SensorData object
ATTRIBUTES: INTENT(IN)

A.6.4 CRTM_SensorData_DefineVersion interface
NAME:
CRTM_SensorData_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_SensorData_DefineVersion(Id)

84

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.6.5 CRTM_SensorData_Destroy interface
NAME:
CRTM_SensorData_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM SensorData objects.

CALLING SEQUENCE:
CALL CRTM_SensorData_Destroy(SensorData)

OBJECTS:
SensorData: Re-initialized SensorData structure.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(OUT)

A.6.6 CRTM_SensorData_Inspect interface

NAME:
CRTM_SensorData_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM SensorData object to stdout.

CALLING SEQUENCE:
CALL CRTM_SensorData_Inspect(SensorData)

INPUTS:
SensorData: CRTM SensorData object to display.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

85

A.6.7 CRTM_SensorData_IsValid interface
NAME:
CRTM_SensorData_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM SensorData object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_SensorData_IsValid(SensorData)

or

IF (CRTM_SensorData_IsValid(SensorData)) THEN....

0BJECTS:
SensorData: CRTM SensorData object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., SensorData object is unused or contains

invalid data.
== .TRUE., SensorData object can be used in CRTM.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.6.8 CRTM_SensorData_Zero interface
NAME:
CRTM_SensorData_Zero
PURPOSE:
Elemental subroutine to zero out the data arrays in a

CRTM SensorData object.

CALLING SEQUENCE:
CALL CRTM_SensorData_Zero(SensorData)

0OBJECTS:
SensorData: CRTM SensorData structure in which the data arrays are

86

to be zeroed out.

UNITS: N/A

TYPE: CRTM_SensorData_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS :
- The dimension components of the structure are *NOT* set to zero.
- The SensorData sensor id and channel components are *NOT* reset.

A.6.9 CRTM_SensorData_IOVersion interface

NAME:
CRTM_SensorData_IOVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_SensorData_IOVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.6.10 CRTM_SensorData InquireFile interface

NAME:
CRTM_SensorData_InquireFile

PURPOSE:
Function to inquire CRTM SensorData object files.

CALLING SEQUENCE:
Error_Status = CRTM_SensorData_InquireFile(Filename , &
n_DataSets = n_DataSets

INPUTS:
Filename: Character string specifying the name of a
CRTM SensorData data file to read.
UNITS: N/A
TYPE: CHARACTER (*)
DIMENSION: Scalar

87

)

ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_DataSets: The number of datasets in the file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.6.11 CRTM_SensorData_ReadFile interface
NAME:
CRTM_SensorData_ReadFile

PURPOSE:
Function to read CRTM SensorData object files.

CALLING SEQUENCE:

Error_Status = CRTM_SensorData_ReadFile(Filename , &
SensorData , &
Quiet = Quiet , &
No_Close = No_Close , &
n_DataSets = n_DataSets)
INPUTS:
Filename: Character string specifying the name of a
SensorData format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
SensorData: CRTM SensorData object array containing the sensor data.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Rank-1
ATTRIBUTES: INTENT(OUT)
OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION

88

No_Close:

OPTIONAL OUTPUTS:
n_DataSets:

FUNCTION RESULT:
Error_Status:

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The actual number of datasets read in.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(QOUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.6.12 CRTM SensorData_WriteFile interface

NAME:

CRTM_SensorData_WriteFile

PURPOSE:

Function to write CRTM SensorData object files.

CALLING SEQUENCE:
Error_Status =

INPUTS:
Filename:

CRTM_SensorData_WriteFile(Filename , &
SensorData , &
Quiet = Quiet , &
No_Close = No_Close)

Character string specifying the name of the

89

SensorData:

OPTIONAL INPUTS:
Quiet:

No_Close:

FUNCTION RESULT:

Error_Status:

SIDE EFFECTS:

SensorData format data file to write.
UNITS: N/A

TYPE: CHARACTER (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM SensorData object array containing the datasets.
UNITS: N/A

TYPE: CRTM_SensorData_type

DIMENSION: Rank-1

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

90

A.7 Geometry Structure

TYPE :: CRTM_Geometry_type
! Allocation indicator

! Field of view index (1-nFOV)
INTEGER :: iFOV = O
! Earth location

REAL(fp) :: Longitude = ZERO
REAL(fp) :: Latitude = ZERO
REAL(fp) :: Surface_Altitude = ZERO

! Sensor angle information

REAL(fp) :: Sensor_Scan_Angle = ZERO

REAL(fp) :: Sensor_Zenith_Angle
REAL(fp) :: Sensor_Azimuth_Angle
! Source angle information
REAL(fp) :: Source_Zenith_Angle = 100.0_fp ! Below horizon
REAL(fp) :: Source_Azimuth_Angle = ZERO
! Flux angle information
REAL(fp) :: Flux_Zenith_Angle = DIFFUSIVITY_ANGLE
! Date for geometry calculations
INTEGER :: Year = 2001
INTEGER :: Month = 1
INTEGER :: Day =1

END TYPE CRTM_Geometry_type

ZERO
ZERO

LOGICAL :: Is_Allocated = .TRUE. ! Placeholder for future expansion

Figure A.7: CRTM_Geometry_type structure definition.

91

Component Description Units Dimensions
iFOv The scan line FOV index N/A Scalar
Longitude Earth longitude deg. E (0—360) Scalar
Latitude Earth latitude deg. N (-90—+90) Scalar
Surface_Altitude Altitude of the Earth’s surface at the specified metres (m) Scalar
lon/lat location
Sensor_Scan_Angle The sensor scan angle from nadir. See fig.A.8 degrees Scalar
Sensor_Zenith_Angle The sensor zenith angle of the FOV. See degrees Scalar
fig.A.9
Sensor_Azimuth Angle The sensor azimuth angle is the angle sub- deg. from N Scalar
tended by the horizontal projection of a di-
rect line from the satellite to the FOV and
the North-South axis measured clockwise from
North. See fig.A.10
Source_Zenith_Angle The source zenith angle. The source is typi- degrees Scalar
cally the Sun (IR/VIS) or Moon (MW /VIS)
[only solar source valid in current release] See
fig.A.11
Source_Azimuth_Angle The source azimuth angle is the angle sub- deg. from N Scalar
tended by the horizontal projection of a di-
rect line from the source to the FOV and
the North-South axis measured clockwise from
North. See fig.A.12
Flux_Zenith_Angle The zenith angle used to approximate down- degrees Scalar
welling flux transmissivity. If not set, the de-
fault value is that of the diffusivity approx-
imation, such that sec(F) = 5/3. Maximum
allowed value is determined from sec(F') = 9/4
Year The year in 4-digit format N/A Scalar
Month The month of year (1-12) N/A Scalar
Day The day of month (1-28/29/30/31) N/A Scalar

Table A.13: CRTM Geometry structure component description.

92

fs

N
|
|
|
|
|
|
|
|
|
|
| \
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure A.8: Definition of Geometry sensor scan angle component.

Zenith

FOV

Figure A.9: Definition of Geometry sensor zenith angle component.

93

North Sub-satellite

| point
I
| ©
! /
I /
I /
| /
| v
! /
:\\//l
L da
L
v
West - ------------ ﬁ ------------- East
FOV

Figure A.10: Definition of Geometry sensor azimuth angle component.

Zenith

Figure A.11: Definition of Geometry source zenith angle component.

94

Horizontal projection
North of direct line
from source

Figure A.12: Definition of Geometry source azimuth angle component.

95

A.7.1 CRTM_Geometry DefineVersion interface

NAME:
CRTM_Geometry_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Geometry_DefineVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.7.2 CRTM_Geometry Destroy interface

NAME:
CRTM_Geometry_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Geometry objects.

CALLING SEQUENCE:
CALL CRTM_Geometry_Destroy(geo)

0BJECTS:
geo: Re-initialized Geometry structure.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QUT)

A.7.3 CRTM_Geometry_GetValue interface
NAME:
CRTM_Geometry_GetValue
PURPOSE:

Elemental subroutine to get the values of CRTM Geometry
object components.

96

CALLING SEQUENCE:

CALL CRTM_Geometry_GetValue(geo, &

OBJECTS:
geo:

OPTIONAL OUTPUTS:
iFOV:

Longitude:

Latitude:

Surface_Altitude:

Sensor_Scan_Angle:

iFov = 1iFOV

Longitude = Longitude
Latitude = Latitude
Surface_Altitude = Surface_Altitude
Sensor_Scan_Angle = Sensor_Scan_Angle

>

B

B

B

B

Sensor_Zenith_Angle = Sensor_Zenith_Angle ,
Sensor_Azimuth_Angle = Sensor_Azimuth_Angle,
Source_Zenith_Angle = Source_Zenith_Angle ,
Source_Azimuth_Angle = Source_Azimuth_Angle,

Flux_Zenith_Angle = Flux_Zenith_Angle
Year = Year

Month = Month

Day = Day

Geometry object from which component values
are to be retrieved.

UNITS: N/A

TYPE: CRTM_Geometry_type

DIMENSION: Scalar or any rank

ATTRIBUTES: INTENT(IN OUT)

Sensor field-of-view index.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Earth longitude

UNITS: degrees East (0->360)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Earth latitude.

UNITS: degrees North (-90->+90)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Altitude of the Earth’s surface at the specifed
lon/lat location.

UNITS: metres (m)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The sensor scan angle from nadir.
UNITS: degrees

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input

97

B

>

>

R rrRRRERR®

ATTRIBUTES: INTENT(OUT), OPTIONAL

Sensor_Zenith_Angle: The zenith angle from the field-of-view
to the sensor.
UNITS: degrees
TYPE: REAL (fp)
DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Sensor_Azimuth_Angle: The azimuth angle subtended by the horizontal
projection of a direct line from the satellite
to the FOV and the North-South axis measured
clockwise from North.

UNITS: degrees from North (0->360)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Source_Zenith_Angle: The zenith angle from the field-of-view
to a source (sun or moon).
UNITS: degrees
TYPE: REAL (fp)
DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Source_Azimuth_Angle: The azimuth angle subtended by the horizontal
projection of a direct line from the source
to the FOV and the North-South axis measured
clockwise from North.

UNITS: degrees from North (0->360)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Flux_Zenith_Angle: The zenith angle used to approximate downwelling
flux transmissivity
UNITS: degrees
TYPE: REAL (fp)
DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Year: The year in 4-digit format, e.g. 1997.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Month: The month of the year (1-12).
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Day: The day of the month (1-28/29/30/31).

98

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

A.7.4 CRTM_Geometry_Inspect interface

NAME:
CRTM_Geometry_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Geometry object to stdout.

CALLING SEQUENCE:
CALL CRTM_Geometry_Inspect(geo)

INPUTS:
geo: CRTM Geometry object to display.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.7.5 CRTM_Geometry_IsValid interface
NAME:
CRTM_Geometry_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Geometry object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Geometry_IsValid(geo)

or

IF (CRTM_Geometry_IsValid(geo)) THEN....

0BJECTS:
geo: CRTM Geometry object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar

99

FUNCTION RESULT:
result:

ATTRIBUTES: INTENT(IN)

Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Geometry object is unused or contains
invalid data.

== .TRUE., Geometry object can be used in CRTM.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.7.6 CRTM_Geometry_SetValue interface

NAME:

CRTM_Geometry_SetValue

PURPOSE:

Elemental subroutine to set the values of CRTM Geometry
object components.

CALLING SEQUENCE:

CALL CRTM_Geometry_SetValue(geo, &

OBJECTS:
geo:

OPTIONAL INPUTS:
iFOV:

iFov = iFOV

Longitude = Longitude
Latitude = Latitude
Surface_Altitude = Surface_Altitude
Sensor_Scan_Angle = Sensor_Scan_Angle

B

B

B

B

>

Sensor_Zenith_Angle = Sensor_Zenith_Angle ,
Sensor_Azimuth_Angle = Sensor_Azimuth_Angle,
Source_Zenith_Angle = Source_Zenith_Angle ,
Source_Azimuth_Angle = Source_Azimuth_Angle,

Flux_Zenith_Angle = Flux_Zenith_Angle
Year = Year

Month = Month

Day = Day

Geometry object for which component values

are to be set.

UNITS: N/A

TYPE: CRTM_Geometry_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN QUT)

Sensor field-of-view index.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input

100

>

>

B

R R R

ATTRIBUTES: INTENT(IN), OPTIONAL

Longitude: Earth longitude
UNITS: degrees East (0->360)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Latitude: Earth latitude.
UNITS: degrees North (-90->+90)
TYPE: REAL(fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Surface_Altitude: Altitude of the Earth’s surface at the specifed
lon/lat location.
UNITS: metres (m)
TYPE: REAL(fp)
DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Sensor_Scan_Angle: The sensor scan angle from nadir.
UNITS: degrees
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Sensor_Zenith_Angle: The zenith angle from the field-of-view
to the sensor.
UNITS: degrees
TYPE: REAL (fp)
DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Sensor_Azimuth_Angle: The azimuth angle subtended by the horizontal
projection of a direct line from the satellite
to the FOV and the North-South axis measured
clockwise from North.

UNITS: degrees from North (0->360)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Source_Zenith_Angle: The zenith angle from the field-of-view
to a source (sun or moon).
UNITS: degrees
TYPE: REAL (fp)
DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Source_Azimuth_Angle: The azimuth angle subtended by the horizontal
projection of a direct line from the source
to the FOV and the North-South axis measured
clockwise from North.

101

UNITS: degrees from North (0->360)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Flux_Zenith_Angle: The zenith angle used to approximate downwelling
flux transmissivity
UNITS: degrees
TYPE: REAL (fp)
DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Year: The year in 4-digit format, e.g. 1997.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Month: The month of the year (1-12).
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Day: The day of the month (1-28/29/30/31).
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

A.7.7 CRTM_Geometry_IOVersion interface

NAME:
CRTM_Geometry_IOVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Geometry_IOVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

102

A.7.8 CRTM_Geometry_InquireFile interface

NAME:
CRTM_Geometry_InquireFile

PURPOSE:
Function to inquire CRTM Geometry object files.

CALLING SEQUENCE:
Error_Status = CRTM_Geometry_InquireFile(Filename , &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM Geometry data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:
n_Profiles: The number of profiles for which their is geometry
information in the data file.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.7.9 CRTM_Geometry ReadFile interface

NAME:
CRTM_Geometry_ReadFile

PURPOSE:
Function to read CRTM Geometry object files.

CALLING SEQUENCE:

Error_Status = CRTM_Geometry_ReadFile(Filename , &
Geometry , &
Quiet = Quiet , &
n_Profiles = n_Profiles)

103

INPUTS:
Filename: Character string specifying the name of an
a Geometry data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OUTPUTS:
Geometry: CRTM Geometry object array containing the
data read from file.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Rank-1
ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

n_Profiles: The number of profiles for which data was read.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(QUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.7.10 CRTM_Geometry_WriteFile interface
NAME:
CRTM_Geometry_WriteFile

PURPOSE:

104

Function to write CRTM Geometry object files.

CALLING SEQUENCE:
Error_Status = CRTM_Geometry_WriteFile(Filename , &
Geometry , &
Quiet = Quiet)

INPUTS:

Filename: Character string specifying the name of the
Geometry format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Geometry: CRTM Geometry object array containing the Geometry
data to write.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Rank-1
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

105

A.8 RTSolution Structure

TYPE :: CRTM_RTSolution_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimensions
INTEGER :: n_Layers = 0 ! K
! Internal variables. Users do not need to worry about these.
LOGICAL :: Scattering_Flag = .TRUE.
INTEGER :: n_Full_Streams = 0
INTEGER :: n_Stokes =0

! Forward radiative transfer

intermediate results for a single channel

! These components are not defined when they are used as TL, AD
! and K variables

REAL(fp) :: Surface_Emissivity = ZERO

REAL(fp) :: Up_Radiance = ZERO

REAL(fp) :: Down_Radiance = ZERO

REAL(fp) :: Down_Solar_Radiance = ZERO

REAL(fp) :: Surface_Planck_Radiance = ZERO

REAL(fp), ALLOCATABLE :: Upwelling_Radiance(:) ' K
! The layer optical depths

REAL(fp), ALLOCATABLE :: Layer_Optical_Depth(:) ! K

! Radiative transfer results for a single channel/node
REAL(fp) :: Radiance = ZERO
REAL(fp) :: Brightness_Temperature = ZERO

END TYPE CRTM_RTSolution_type

Figure A.13: CRTM_RTSolution_type structure definition.

106

Component Description Units Dimensions
n_Layers Number of atmospheric profile layers (K) N/A Scalar
Surface Emissivity The computed surface emissivity N/A Scalar
Up_Radiance The atmospheric portion of the upwelling ra- mW /(m?.sr.cm™) Scalar
diance
Down_Radiance The atmospheric portion of the downwelling mW/(m?.sr.cm™) Scalar
radiance
Down_Solar Radiance The downwelling direct solar radiance mW /(m?.sr.cm™) Scalar
Surface Planck Radiance The surface radiance mW/(m?.sr.cm™) Scalar
Upwelling Radiance The upwelling radiance profile, including the mW/(m?.sr.cm™) K
reflected downwelling and surface contribu-
tions.
Layer_Optical Depth The layer optical depth profile N/A K
Radiance The sensor radiance mW /(m?.sr.cm™) Scalar
Brightness_Temperature The sensor brightness temperature Kelvin Scalar

Table A.14: CRTM RTSolution structure component description

107

A.8.1 CRTM_RTSolution_Associated interface

NAME:
CRTM_RTSolution_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM RTSolution object.

CALLING SEQUENCE:
Status = CRTM_RTSolution_Associated(RTSolution)

OBJECTS:
RTSolution: RTSolution structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the RTSolution members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input RTSolution argument

A.8.2 CRTM_RTSolution Compare interface

NAME:
CRTM_RTSolution_Compare

PURPOSE:
Elemental function to compare two CRTM_RTSolution objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_RTSolution_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM RTSolution objects to be compared.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.

108

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.8.3 CRTM_RTSolution_Create interface
NAME:
CRTM_RTSolution_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM RTSolution object.

CALLING SEQUENCE:
CALL CRTM_RTSolution_Create(RTSolution, n_Layers)

OBJECTS:
RTSolution: RTSolution structure.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QUT)
INPUTS:
n_Layers: Number of layers for which there is RTSolution data.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as RTSolution object
ATTRIBUTES: INTENT(IN)

A.8.4 CRTM_RTSolution_DefineVersion interface
NAME:
CRTM_RTSolution_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_RTSolution_DefineVersion(Id)

109

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.8.5 CRTM_RTSolution Destroy interface
NAME:
CRTM_RTSolution_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM RTSolution objects.

CALLING SEQUENCE:
CALL CRTM_RTSolution_Destroy(RTSolution)

OBJECTS:
RTSolution: Re-initialized RTSolution structure.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(OUT)

A.8.6 CRTM_RTSolution _Inspect interface
NAME:
CRTM_RTSolution_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM RTSolution object to stdout.

CALLING SEQUENCE:
CALL CRTM_RTSolution_Inspect(RTSolution)

INPUTS:
RTSolution: CRTM RTSolution object to display.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

110

A.8.7 CRTM_RTSolution_IOVersion interface
NAME:
CRTM_RTSolution_IOVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_RTSolution_IOVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.8.8 CRTM_RTSolution InquireFile interface

NAME:
CRTM_RTSolution_InquireFile

PURPOSE:
Function to inquire CRTM RTSolution object files.

CALLING SEQUENCE:
Error_Status = CRTM_RTSolution_InquireFile(Filename , &
n_Channels n_Channels, &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM RTSolution data file to read.
UNITS: N/A
TYPE: CHARACTER ()
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:
n_Channels: The number of spectral channels for which there is
data in the file.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

n_Profiles: The number of profiles in the data file.
UNITS: N/A

111

FUNCTION RESULT:
Error_Status:

TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.8.9 CRTM RTSolution_ReadFile interface

NAME:

CRTM_RTSolution_ReadFile

PURPOSE:

Function to read CRTM RTSolution object files.

CALLING SEQUENCE:
Error_Status

INPUTS:
Filename:

OUTPUTS:
RTSolution:

OPTIONAL INPUTS:
Quiet:

CRTM_RTSolution_ReadFile(Filename ,
RTSolution s
Quiet = Quiet ,
n_Channels = n_Channels ,
n_Profiles n_Profiles ,

Frreee

Character string specifying the name of an

RTSolution format data file to read.
UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM RTSolution object array containing the RTSolution
data.

UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Rank-2 (n_Channels x n_Profiles)

ATTRIBUTES: INTENT(QUT)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.

112

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

n_Channels: The number of channels for which data was read.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

n_Profiles: The number of profiles for which data was read.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.8.10 CRTM RTSolution WriteFile interface

NAME:
CRTM_RTSolution_WriteFile

PURPOSE:
Function to write CRTM RTSolution object files.

CALLING SEQUENCE:
Error_Status = CRTM_RTSolution_WriteFile(Filename , &
RTSolution , &
Quiet = Quiet)

INPUTS:
Filename: Character string specifying the name of the
RTSolution format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

RTSolution: CRTM RTSolution object array containing the RTSolution

113

OPTIONAL INPUTS:
Quiet:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

data.

UNITS: N/A

TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

114

A.9 Options Structure

TYPE :: CRTM_Options_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Input checking on by default
LOGICAL :: Check_Input = .TRUE.
! User defined emissivity/reflectivity
! ...Dimensions
INTEGER :: n_Channels = 0 ! L dimension
! ...Index into channel-specific components
INTEGER :: Channel = 0
! .. .Emissivity optional arguments
LOGICAL :: Use_Emissivity = .FALSE.
REAL(fp), ALLOCATABLE :: Emissivity(:) ! L
! ...Direct reflectivity optional arguments
LOGICAL :: Use_Direct_Reflectivity = .FALSE.
REAL(fp), ALLOCATABLE :: Direct_Reflectivity(:) ! L
! Antenna correction application
LOGICAL :: Use_Antenna_Correction = .FALSE.
! SSU instrument input
TYPE(SSU_Input_type) :: SSU
! Zeeman-splitting input
TYPE(Zeeman_Input_type) :: Zeeman

END TYPE CRTM_Options_type

Figure A.14: CRTM_Options_type structure definition.

115

Component Description Units Dimensions
Check_Input Logical switch to enable or disable input data checking. N/A Scalar
I .FALSE.: No input data check.
.TRUE. : Input data is checked [DEFAULT].
n_Channels Number of sensor channels (L). N/A Scalar
Channel Index into channel-specific components. N/A Scalar
Use Emissivity Logical switch to apply user-defined surface emissivity. N/A Scalar
" .FALSE.: Calculate emissivity [DEFAULT].
.TRUE. : Use user-defined emissivity
Emissivity User-defined surface emissivity for each sensor channel. N/A L
Use Direct Reflectivity Logical switch to apply user-defined reflectivity for N/A Scalar
downwelling source (e.g. solar). This switch is ignored
unless the Use_Emissivity switch is also set. If:
.FALSE.: Calculate reflectivity [DEFAULT].
.TRUE. : Use user-defined reflectivity
Direct_Reflectivity User-defined direct reflectivity for downwelling source N/A L
for each sensor channel.
Use_Antenna Correction Logical switch to apply antenna correction for the N/A Scalar
AMSU-A, AMSU-B, and MHS sensors. Note that for
this switch to be effective in the CRTM call, the FOV
field of the input Geometry structure must be set and
the antenna correction coefficients must be present in
the sensor SpcCoeff datafile. If:
.FALSE.: No correction [DEFAULT].
.TRUE. : Apply antenna correction.
SSU Structure component containing optional SSU sensor- N/A Scalar
specific input. See section A.10.
Zeeman Structure component containing optional input for those ~ N/A Scalar

sensors where Zeeman-splitting is an issue for high-
peaking channels. See section A.11.

Table A.15: CRTM Options structure component description

116

A.9.1 CRTM Options_Associated interface

NAME:
CRTM_Options_Associated

PURPOSE:
Elemental function to test the status of the allocatable components

of a CRTM Options object.

CALLING SEQUENCE:
Status = CRTM_Options_Associated(Options)

OBJECTS:
Options: Options structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the Options members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input Options argument

A.9.2 CRTM Options_Create interface

NAME:
CRTM_Options_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Options object.

CALLING SEQUENCE:
CALL CRTM_Options_Create(Options, n_Channels)

OBJECTS:
Options: Options structure.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Channels: Number of channels for which there is Options data.

Must be > O.

117

This dimension only applies to the emissivity-related

components.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Options object
ATTRIBUTES: INTENT(IN)

A.9.3 CRTM Options_DefineVersion interface

NAME:
CRTM_Options_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Options_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

A.9.4 CRTM_ Options_Destroy interface

NAME:
CRTM_Options_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Options objects.

CALLING SEQUENCE:
CALL CRTM_Options_Destroy(Options)

0BJECTS:
Options: Re-initialized Options structure.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(QUT)

118

A.9.5 CRTM_ Options_Inspect interface
NAME:
CRTM_Options_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Options object to stdout.

CALLING SEQUENCE:
CALL CRTM_Options_Inspect(Options)

INPUTS:
Options: CRTM Options object to display.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.9.6 CRTM_Options_IsValid interface

NAME:
CRTM_Options_IsValid

PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Options object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Options_IsValid(opt)

or

IF (CRTM_Options_IsValid(opt)) THEN....

OBJECTS:
opt: CRTM Options object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Options object is unused or contains
invalid data.
== .TRUE., Options object can be used in CRTM.

119

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

120

A.10 SSU_Input Structure

The SSU_Input structure is a component of the Options input structure. Note in figure A.15 that the structure
is declared as PRIVATE. As such, the only way to set values in, or get values from, the structure is via the
SSU_Input_SetValue or SSU_Input_GetValue subroutines respectively.

TYPE :: SSU_Input_type
PRIVATE
! Time in decimal year (e.g. 2009.08892694 corresponds to 11:00 Feb. 2, 2009)
REAL(fp) :: Time = ZERO
! SSU C02 cell pressures (hPa)
REAL(fp) :: Cell_Pressure(MAX_N_CHANNELS) = ZERO
END TYPE SSU_Input_type

Figure A.15: SSU_Input_type structure definition.

Component Description Units Dimensions

Time Time in decimal year corresponding to SSU N/A Scalar
observation.

Cell Pressure The SSU CO; cell pressures. hPa MAX_N_CHANNELS (3)

Table A.16: CRTM SSU_Input structure component description

A.10.1 SSU_Input_CellPressurelsSet interface
NAME:
SSU_Input_CellPressurelsSet
PURPOSE:
Elemental function to determine if SSU_Input object cell pressures

are set (i.e. > zero).

CALLING SEQUENCE:
result = SSU_Input_CellPressureIsSet(ssu)

or
IF (SSU_Input_CellPressurelIsSet(ssu)) THEN

END IF

OBJECTS:
ssu: SSU_Input object for which the cell pressures
are to be tested.
UNITS: N/A
TYPE: SSU_Input_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

121

FUNCTION RESULT:
result:

Logical variable indicating whether or not all the
SSU cell pressures are set.

If == .FALSE., cell pressure values are <= 0.0hPa and
thus are considered to be NOT set or valid.
== .TRUE., cell pressure values are > 0.0hPa and
thus are considered to be set and valid.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Scalar

A.10.2 SSU_Input _DefineVersion interface

NAME:

SSU_Input_DefineVersion

PURPOSE:
Subroutine

CALLING SEQUENCE:

to return the module version information.

CALL SSU_Input_DefineVersion(Id)

OUTPUTS:
Id:

Character string containing the version Id information
for the module.

UNITS: N/A

TYPE: CHARACTER (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(OUT)

A.10.3 SSU_Input_GetValue interface

NAME:

SSU_Input_GetValue

PURPOSE:

Elemental subroutine to Get the values of SSU_Input
object components.

CALLING SEQUENCE:

CALL SSU_Input_GetValue(SSU_Input ,
Channel = Channel ,
Time = Time s

OBJECTS:

Cell_Pressure = Cell_Pressure,
n_Channels n_Channels

e e

122

SSU_Input: SSU_Input object for which component values
are to be set.
UNITS: N/A
TYPE: SSU_Input_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN QOUT)

OPTIONAL INPUTS:
Channel: SSU channel for which the C02 cell pressure
is required.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

Time: SSU instrument mission time.
UNITS: decimal year
TYPE: REAL(fp)

DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Cell_Pressure: SSU channel C02 cell pressure. Must be
specified with the Channel optional input
dummy argument.

UNITS: hPa

TYPE: REAL (fp)

DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

n_Channels: Number of SSU channels..
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

A.10.4 SSU_Input_Inspect interface

NAME:
SSU_Input_Inspect

PURPOSE:
Subroutine to print the contents of an SSU_Input object to stdout.

CALLING SEQUENCE:
CALL SSU_Input_Inspect(ssu)

INPUTS:

ssu: SSU_Input object to display.
UNITS: N/A

123

TYPE: SSU_Input_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.10.5 SSU_Input_IsValid interface
NAME:
SSU_Input_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
SSU_Input object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = SSU_Input_IsValid(ssu)

or

IF (SSU_Input_IsValid(ssu)) THEN....

OBJECTS:
ssu: SSU_Input object which is to have its
contents checked.
UNITS: N/A
TYPE: SSU_Input_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., object is unused or contains
invalid data.
== .TRUE., object can be used.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.10.6 SSU_Input_SetValue interface

NAME:
SSU_Input_SetValue

PURPOSE:
Elemental subroutine to set the values of SSU_Input

124

object components.

CALLING SEQUENCE:

CALL SSU_Input_SetValue(SSU_Input

OBJECTS:
SSU_Input:

OPTIONAL INPUTS:

Time:

Cell_Pressure:

Channel:

Time = Time
Cell_Pressure = Cell_Pressure
Channel = Channel

, &
, &
, &

)

SSU_Input object for which component values

are to be set.

UNITS: N/A

TYPE: SSU_Input_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN QOUT)

SSU instrument mission time.
UNITS: decimal year
TYPE: REAL (fp)

DIMENSION: Scalar or same as SSU_Input

ATTRIBUTES: INTENT(IN), OPTIONAL

SSU channel C02 cell pressure. Must be
specified with the Channel optional dummy

argument.
UNITS: hPa
TYPE: REAL (fp)

DIMENSION: Scalar or same as SSU_Input

ATTRIBUTES: INTENT(IN), OPTIONAL

SSU channel for which the C02 cell pressure
is to be set. Must be specified with the
Cell_Pressure optional dummy argument.

UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as SSU_Input

ATTRIBUTES: INTENT(IN), OPTIONAL

125

A.11 Zeeman Input Structure

The Zeeman_Input structure is a component of the Options input structure. Note in figure A.16 that the
structure is declared as PRIVATE. As such, the only way to set values in, or get values from, the structure is via
the Zeeman_Input_SetValue or Zeeman Input_GetValue subroutines respectively.

TYPE :: Zeeman_Input_type
PRIVATE
! Earth magnetic field strength in Gauss
REAL(fp) :: Be = DEFAULT_MAGENTIC_FIELD
! Cosine of the angle between the Earth
! magnetic field and wave propagation direction
REAL(fp) :: Cos_ThetaB = ZERO
! Cosine of the azimuth angle of the Be vector.
REAL(fp) :: Cos_PhiB = ZERO
! Doppler frequency shift caused by Earth-rotation.
REAL(fp) :: Doppler_sShift = ZERO

END TYPE Zeeman_Input_type

Figure A.16: Zeeman_Input_type structure definition.

Component Description Units Dimensions

Be Earth magnetic field strength. Gauss Scalar

Cos_ThetaB Cosine of the angle between the Earth mag- N/A Scalar
netic field and wave propagation direction.

Cos_PhiB Cosine of the azimuth angle of the B, vec- N/A Scalar

tor in the (v, h, k) coordinates system, where
v, h and k comprise a right-hand orthogonal
system, similar to the (x,y,z) Cartesian coor-
dinates. The h vector is normal to the plane
containing the k and z vectors, where k points
to the wave propagation direction and z points
to the zenith. h = (z x k)/|z x k|. The az-
imuth angle is the angle on the (v,h) plane
from the positive v axis to the projected line
of the B, vector on this plane, positive coun-
terclockwise.
Doppler_Shift Doppler frequency shift caused by Earth- KHz Scalar

rotation (positive towards sensor). A zero
value means no frequency shift.

Table A.17: CRTM Zeeman_Input structure component description

A.11.1 Zeeman_Input_DefineVersion interface

NAME:
Zeeman_Input_DefineVersion

PURPOSE:

126

Subroutine to return the module version information.

CALLING SEQUENCE:

CALL Zeeman_Input_DefineVersion(Id)

OUTPUTS:
Id:

Character string containing the version Id information
for the module.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(OUT)

A.11.2 Zeeman_Input_GetValue interface

NAME:

Zeeman_Input_GetValue

PURPOSE:

Elemental subroutine to get the values of Zeeman_Input
object components.

CALLING SEQUENCE:

CALL Zeeman_Input_GetValue(Zeeman_Input , &
Field_Strength = Field_Strength, &

Cos_ThetaB = Cos_ThetaB , &

Cos_PhiB = Cos_PhiB , &

)

0BJECTS:
Zeeman_Input:

OPTIONAL OUTPUTS:

Field_Strength:

Cos_ThetaB:

Doppler_Shift Doppler_Shift

Zeeman_Input object for which component values
are to be set.

UNITS: N/A

TYPE: Zeeman_Input_type

DIMENSION: Scalar or any rank

ATTRIBUTES: INTENT(IN QOUT)

Earth’s magnetic filed strength

UNITS: Gauss

TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Cosine of the angle between the Earth magnetic
field and wave propagation vectors.

UNITS: N/A

TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

127

Cos_PhiB: Cosine of the azimuth angle of the Earth magnetic
field vector.
UNITS: N/A
TYPE: REAL (fp)
DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Doppler_Shift: Doppler frequency shift caused by Earth-rotation.
Positive towards semsor.
UNITS: KHz
TYPE: REAL (fp)
DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

A.11.3 Zeeman_Input_Inspect interface

NAME:
Zeeman_Input_Inspect

PURPOSE:
Subroutine to print the contents of an Zeeman_Input object to stdout.

CALLING SEQUENCE:
CALL Zeeman_Input_Inspect(z)

INPUTS:
zZ: Zeeman_Input object to display.
UNITS: N/A
TYPE: Zeeman_Input_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.11.4 Zeeman Input_IsValid interface
NAME:
Zeeman_Input_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
Zeeman_Input object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = Zeeman_Input_IsValid(z)

128

or

IF (Zeeman_Input_IsValid(z)) THEN....

OBJECTS:
z: Zeeman_Input object which is to have its
contents checked.
UNITS: N/A
TYPE: Zeeman_Input_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., object is unused or contains
invalid data.
== .TRUE., object can be used.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.11.5 Zeeman_Input_SetValue interface

NAME:
Zeeman_Input_SetValue

PURPOSE:
Elemental subroutine to set the values of Zeeman_Input
object components.

CALLING SEQUENCE:

CALL Zeeman_Input_SetValue(Zeeman_Input , &
Field_Strength = Field_Strength, &
Cos_ThetaB = Cos_ThetaB , &
Cos_PhiB = Cos_PhiB , &
Doppler_Shift = Doppler_Shift)
OBJECTS:
Zeeman_Input: Zeeman_Input object for which component values
are to be set.
UNITS: N/A
TYPE: Zeeman_Input_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:

Field_Strength: Earth’s magnetic filed strength
UNITS: Gauss
TYPE: REAL (fp)

129

Cos_ThetaB:

Cos_PhiB:

Doppler_Shift:

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

Cosine of the angle between the Earth magnetic
field and wave propagation vectors.

UNITS: N/A

TYPE: REAL(fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

Cosine of the azimuth angle of the Earth magnetic
field vector.

UNITS: N/A

TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

Doppler frequency shift caused by Earth-rotation.
Positive towards sensor.

UNITS: KHz

TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

130

Valid Sensor Identifiers

This section contains a table detailing the instruments for which there are CRTM coefficients. For most sensors
there are transmittance coefficient (TauCoeff) datafiles for both the Optical Depth in Absorber Space (ODAS;
also known as Compact-OPTRAN) and Optical Depth in Pressure Space (ODPS) transmittance algorithms. All
visible and SSU channels have only ODAS coefficients.

131

Table B.1: CRTM sensor identifiers and the availability of ODAS or ODPS TauCoeff files

Instrument Sensor Id ODAS available ODPS available
Envisat AATSR aatsr_envisat yes yes
GOES-R ABI abi_gr yes yes
Aqua AIRS (281ch. subset) airs281_aqua yes yes
Aqua AIRS (324ch. subset) airs324_aqua yes yes
Aqua AIRS (all channels) airs2378_aqua yes yes

Aqua AIRS Module-1a airsMla aqua yes yes
Aqua AIRS Module-1b airsMib_aqua yes yes
Aqua AIRS Module-2a airsM2a_aqua yes yes
Aqua AIRS Module-2b airsM2b_aqua yes yes
Aqua AIRS Module-3 airsM3_aqua yes yes
Aqua AIRS Module-4a airsM4a aqua yes yes
Aqua AIRS Module-4b airsM4b_aqua yes yes
Aqua AIRS Module-4¢ airsM4c_aqua yes yes
Aqua AIRS Module-4d airsM4d_aqua yes yes
Aqua AIRS Module-5 airsM5_aqua yes yes
Aqua AIRS Module-6 airsM6_aqua yes yes
Aqua AIRS Module-7 airsM7_aqua yes yes
Aqua AIRS Module-8 airsM8_aqua yes yes
Aqua AIRS Module-9 airsM9_aqua yes yes
Aqua AIRS Module-10 airsM10_aqua yes yes
Aqua AIRS Module-11 airsM11l_aqua yes yes
Aqua AIRS Module-12 airsM12_aqua yes yes
Aqua AMSR-E amsre_aqua yes yes
Aqua AMSU-A amsua_aqua yes yes
NOAA-15 AMSU-A amsua_nlb yes yes
NOAA-16 AMSU-A amsua ni6 yes yes
NOAA-17 AMSU-A amsua ni7 yes yes
NOAA-18 AMSU-A amsua ni8 yes yes
NOAA-19 AMSU-A amsua ni9 yes yes
MetOp-A AMSU-A amsua_metop-a yes yes
MetOp-B AMSU-A amsua metop-b yes yes
MetOp-C AMSU-A amsua_metop-c yes yes
NOAA-15 AMSU-B amsub_ni5 yes yes
NOAA-16 AMSU-B amsub_ni6 yes yes
NOAA-17 AMSU-B amsub_n17 yes yes
NPP ATMS atms_npp yes yes
ERS-1 ATSR atsrl_ersl yes yes
ERS-2 ATSR atsr2_ers2 yes yes
TIROS-N AVHRR/2 avhrr2_tirosn yes yes
NOAA-06 AVHRR/2 avhrr2 n06 yes yes
NOAA-07 AVHRR/2 avhrr2_n07 yes yes
NOAA-08 AVHRR/2 avhrr2_n08 yes yes
NOAA-09 AVHRR/2 avhrr2_n09 yes yes
NOAA-10 AVHRR/2 avhrr2 n10 yes yes
NOAA-11 AVHRR/2 avhrr2 nil yes yes
NOAA-12 AVHRR/2 avhrr2.ni2 yes yes
NOAA-14 AVHRR/2 avhrr2.ni4 yes yes
NOAA-15 AVHRR/3 avhrr3_n15 yes yes
NOAA-16 AVHRR/3 avhrr3 n16 yes yes

Continued on Next Page. ..

132

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
NOAA-17 AVHRR/3 avhrr3.nl7 yes yes
NOAA-18 AVHRR/3 avhrr3.n18 yes yes
NOAA-19 AVHRR/3 avhrr3 n19 yes yes
MetOp-A AVHRR/3 avhrr3_ metop-a yes yes
MetOp-B AVHRR/3 avhrr3_metop-b yes yes

NPP CrlIS (374ch. subset) cris374 npp yes yes
NPP CrlIS (399ch. subset) cris399_npp yes yes
NPP CrIS (all channels) cris1305_npp yes yes
NPP CrIS Band 1 crisBl npp yes yes

NPP CrIS Band 2 crisB2_npp yes yes

NPP CrIS Band 3 crisB3_npp yes yes

GPM GMI gmi_gpm yes yes
TIROS-N HIRS/2 hirs2 tirosn yes yes
NOAA-06 HIRS/2 hirs2 n06 yes yes
NOAA-07 HIRS/2 hirs2 n07 yes yes
NOAA-08 HIRS/2 hirs2 n08 yes yes
NOAA-09 HIRS/2 hirs2n09 yes yes
NOAA-10 HIRS/2 hirs2ni10 yes yes
NOAA-11 HIRS/2 hirs2 ni1 yes yes
NOAA-12 HIRS/2 hirs2 ni12 yes yes
NOAA-14 HIRS/2 hirs2 ni4 yes yes
NOAA-15 HIRS/3 hirs3.ni15 yes yes
NOAA-16 HIRS/3 hirs3.ni16 yes yes
NOAA-17 HIRS/3 hirs3 nil7 yes yes
NOAA-18 HIRS/4 hirs4d n18 yes yes
NOAA-19 HIRS/4 hirs4 n19 yes yes
MetOp-A HIRS/4 hirs4 metop-a yes yes
MetOp-B HIRS/4 hirs4 metop-b yes yes

Aqua HSB hsb_aqua yes yes
MetOp-A TAST (300ch. subset) iasi300_metop-a yes yes
MetOp-A IASI (316¢h. subset) iasi316_metop-a yes yes
MetOp-A IASI (616ch. subset) iasi616_metop-a yes yes
MetOp-A TAST (all channels) iasi8461 _metop-a yes yes
MetOp-A TASI Band 1 iasiB1 metop-a yes yes
MetOp-A TASI Band 2 iasiB2 metop-a yes yes
MetOp-A TASI Band 3 iasiB3_metop-a yes yes
MetOp-B TAST (300ch. subset) iasi300_metop-b yes yes
MetOp-B TASI (316¢h. subset) iasi316_metop-b yes yes
MetOp-B TASI (616¢ch. subset) iasi616 metop-b yes yes
MetOp-B TAST (all channels) iasi8461 metop-b yes yes
MetOp-B TASI Band 1 iasiB1 metop-b yes yes
MetOp-B TASI Band 2 iasiB2_metop-b yes yes
MetOp-B TASI Band 3 iasiB3_metop-b yes yes
GOES-08 Imager imgr_g08 yes yes
GOES-09 Imager imgr_g09 yes yes
GOES-10 Imager imgr_gi10 yes yes
GOES-11 Imager imgr gil yes yes
GOES-12 Imager imgr gi2 yes yes
GOES-13 Imager imgr gi13 yes yes
GOES-14 Imager imgr gl4 yes yes

Continued on Next Page. ..

133

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
GOES-15 Imager imgr_gi5 yes yes
MTSAT-1R Imager imgr mtir yes yes
MTSAT-2 Imager imgr mt2 yes yes
Fengyun-3a IRAS iras_fy3a yes yes
Fengyun-3b IRAS iras_fy3b yes yes
Megha-Tropiques MADRAS madras_meghat yes yes
Fengyun-3a MERSI mersi_fy3a yes yes
NOAA-18 MHS mhs_ni8 yes yes
NOAA-19 MHS mhs n19 yes yes
MetOp-A MHS mhs_metop-a yes yes
MetOp-B MHS mhs_metop-b yes yes
MetOp-C MHS mhs_metop-c yes yes
COMS-1 MI (low patch) mi-1_coms yes yes
COMS-1 MI (medium patch) mi-m_coms yes yes
Aqua MODIS modis_aqua yes yes
Terra MODIS modis_terra yes yes
TIROS-N MSU msu_tirosn yes yes
NOAA-06 MSU msu_n06 yes yes
NOAA-07 MSU msu_n07 yes yes
NOAA-08 MSU msu_n08 yes yes
NOAA-09 MSU msu_n09 yes yes
NOAA-10 MSU msu_nlo yes yes
NOAA-11 MSU msunil yes yes
NOAA-12 MSU msu ni?2 yes yes
NOAA-14 MSU msu nl4 yes yes
Meteosat-3 MVIRI (backup) mviriBKUP_m03 no yes
Meteosat-4 MVIRI (backup) mviriBKUP_m04 no yes
Meteosat-5 MVIRI (backup) mviriBKUP_m05 no yes
Meteosat-6 MVIRI (backup) mviriBKUP_m06 no yes
Meteosat-7 MVIRI (backup) mviriBKUP m07 no yes
Meteosat-3 MVIRI (nominal) mviriNOM_m03 no yes
Meteosat-4 MVIRI (nominal) mviriNOM_mO4 no yes
Meteosat-5 MVIRI (nominal) mviriNOM mO5 no yes
Meteosat-6 MVIRI (nominal) mviriNOM_m06 no yes
Meteosat-7 MVIRI (nominal) mviriNOM mO7 no yes
Fengyun-3a MWHS mwhs_fy3a yes yes
Fengyun-3b MWHS mwhs_fy3b yes yes
Fengyun-3a MWRI mwri_fy3a yes yes
Fengyun-3b MWRI mwri_fy3b yes yes
Fengyun-3a MWTS mwts_fy3a yes yes
Fengyun-3b MWTS mwts_fy3b yes yes
Megha-Tropiques SAPHIR saphir_meghat yes yes
Meteosat-08 SEVIRI seviri m08 yes yes
Meteosat-09 SEVIRI seviri m09 yes yes
Meteosat-10 SEVIRI sevirimi0 yes yes
GOES-10 Sounder (Detector 1) sndrD1_g10 yes yes
GOES-10 Sounder (Detector 2) sndrD2_g10 yes yes
GOES-10 Sounder (Detector 3) sndrD3_g10 yes yes
GOES-10 Sounder (Detector 4) sndrD4 _g10 yes yes
GOES-11 Sounder (Detector 1) sndrD1_g11 yes yes

Continued on Next Page. ..

134

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
GOES-11 Sounder (Detector 2) sndrD2 _gi1 yes yes
GOES-11 Sounder (Detector 3) sndrD3_gl1 yes yes
GOES-11 Sounder (Detector 4) sndrD4_gi1 yes yes
GOES-12 Sounder (Detector 1) sndrD1_gi2 yes yes
GOES-12 Sounder (Detector 2) sndrD2_g12 yes yes
GOES-12 Sounder (Detector 3) sndrD3_g12 yes yes
GOES-12 Sounder (Detector 4) sndrD4 _g12 yes yes
GOES-13 Sounder (Detector 1) sndrD1_g13 yes yes
GOES-13 Sounder (Detector 2) sndrD2_g13 yes yes
GOES-13 Sounder (Detector 3) sndrD3_g13 yes yes
GOES-13 Sounder (Detector 4) sndrD4_g13 yes yes
GOES-14 Sounder (Detector 1) sndrD1_gl4 yes yes
GOES-14 Sounder (Detector 2) sndrD2_g14 yes yes
GOES-14 Sounder (Detector 3) sndrD3_g14 yes yes
GOES-14 Sounder (Detector 4) sndrD4_gl14 yes yes
GOES-15 Sounder (Detector 1) sndrD1_g15 yes yes
GOES-15 Sounder (Detector 2) sndrD2_g15 yes yes
GOES-15 Sounder (Detector 3) sndrD3_gl5 yes yes
GOES-15 Sounder (Detector 4) sndrD4_g15 yes yes

GOES-08 Sounder sndr_g08 yes yes
GOES-09 Sounder sndr_g09 yes yes
GOES-10 Sounder sndr_g10 yes yes
GOES-11 Sounder sndr_gi1 yes yes
GOES-12 Sounder sndr_g12 yes yes
GOES-13 Sounder sndr_g13 yes yes
GOES-14 Sounder sndr_gl4 yes yes
GOES-15 Sounder sndr_g15 yes yes
DMSP-08 SSM/1T ssmi_f08 yes yes
DMSP-10 SSM/I ssmi_f10 yes yes
DMSP-11 SSM/I ssmi_f11 yes yes
DMSP-13 SSM/I ssmi_f13 yes yes
DMSP-14 SSM/I ssmi_f14 yes yes
DMSP-15 SSM/1T ssmi_f15 yes yes
DMSP-16 SSMIS ssmis_f16 yes yes
DMSP-17 SSMIS ssmis_f17 yes yes
DMSP-18 SSMIS ssmis_f18 yes yes
DMSP-19 SSMIS ssmis_f19 yes yes
DMSP-20 SSMIS ssmis_£20 yes yes
DMSP-13 SSM/T-1 ssmt1_f13 yes yes
DMSP-15 SSM/T-1 ssmt1_f15 yes yes
DMSP-14 SSM/T-2 ssmt2_f14 yes yes
DMSP-15 SSM/T-2 ssmt2_f15 yes yes
TIROS-N SSU ssu_tirosn yes yes
NOAA-06 SSU ssu_n06 yes yes
NOAA-07 SSU ssu_n07 yes yes
NOAA-08 SSU ssu_n08 yes yes
NOAA-09 SSU ssu_n09 yes yes
NOAA-11 SSU ssunli yes yes
NOAA-14 SSU ssu_nl4 yes yes
TRMM TMI tmi_trmm yes yes

Continued on Next Page. ..

135

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
GOES-R ABI (visible) v.abi_gr yes no
NOAA-15 AVHRR/3 (visible) v.avhrr3.nib yes no
NOAA-16 AVHRR/3 (visible) v.avhrr3 ni6é yes no
NOAA-17 AVHRR/3 (visible) v.avhrr3ni17 yes no
NOAA-18 AVHRR/3 (visible) v.avhrr3ni8 yes no
NOAA-19 AVHRR/3 (visible) v.avhrr3.ni9 yes 1no
MetOp-A AVHRR/3 (visible) v.avhrr3_metop-a yes no
MetOp-B AVHRR/3 (visible) v.avhrr3_metop-b yes no
GOES-11 Imager (visible) v.imgr gil yes no
GOES-12 Imager (visible) v.imgr_gi2 yes no
GOES-13 Imager (visible) v.imgr_gi3 yes no
GOES-14 Tmager (visible) v.imgr_gid yes no
GOES-15 Imager (visible) v.imgr gib yes no
MTSAT-2 Imager (visible) v.imgr mt2 yes no
Aqua MODIS (visible) v.modis_aqua yes no
Terra MODIS (visible) v.modis_terra yes no
Meteosat-08 SEVIRI (visible) v.seviri m08 yes no
Meteosat-09 SEVIRI (visible) v.seviri m09 yes no
Meteosat-10 SEVIRI (visible) v.sevirimiO yes no
NPP VIIRS Imager, HiRes (visible) v.viirs-i_npp yes no
NPP VIIRS Imager, ModRes (visible) v.viirs-m_npp yes no
GOES-4 VAS vas_g04 no yes
GOES-5 VAS vas_g05 no yes
GOES-6 VAS vas_g06 no yes
GOES-7 VAS vas_g07 no yes
NPP VIIRS Imager, HiRes viirs-i_npp yes yes
NPP VIIRS Imager, ModRes viirs-m_npp yes yes
Fengyun-3a VIRR virr_fy3a yes yes
GMS-5 VISSR (Detector A) vissrDetA_gms5 yes yes
GMS-5 VISSR (Detector B) vissrDetB_gmsb no yes
Kalpana-1 VHRR vhrr_kalpanal yes yes
ITOS VTPR-S1 vtprSl_itos yes yes
ITOS VTPR-S2 vtprS2_itos yes yes
ITOS VTPR-S3 vtprS3_itos yes yes
ITOS VTPR-54 vtprS4_itos yes yes
Coriolis WindSat windsat_coriolis yes yes

136

C
Migration Path from REL-1.2.x to REL-2.0.x

This section details the user code changes that need to be made to migrate from using CRTM v1.2.x to v2.0.x.

C.1 CRTM Initialization

The Sensor_Id argument to the CRTM initialisation function identifies the sensors for which the CRTM will be
initialised. In v1.2.x this argument was optional because generic SpcCoeff and TauCoeff files could be used. In
v2.0.x, generic SpcCoeff and TauCoeff coefficient files are no longer accepted and, thus, a sensor identifier must
be specified.

In v1.2.x the CRTM_Init interface looked like:

errStatus = CRTM_Init(ChannelInfo, Sensor_ID=Sensor_ID)
where Sensor_Id is optional. The v2.0.x interface is now,

errStatus = CRTM_Init(Sensor_ID, ChannelInfo)

where both the Sensor_Id and ChannelInfo arguments are mandatory. See the CRTM_Init section for complete
details about the v2.0.x interface.

C.2 CRTM Structure Life Cycle Changes

As mentioned in the “What’s New in v2.0” section, the user-accessible structures (i.e. those used to define the
inputs to, and return the outputs from, the CRTM) and their associated life cycle procedures (i.e. allocation
and deallocation) have been changed. To mitigate the possibility of memory leaks, the definitions of array
members of structures have had their POINTER attribute replaced with ALLOCATABLE. This was a first step in
preparation for use of Fortran2003 Object Oriented features in the CRTM (once Fortran2003 compiler become
widely available), where the derived type structure definitions will be reclassified as objects and their procedures
will be type-bound. The changes in the affected user-accessible structure procedures are shown below.

In addition to the general interface changes, all of the structure life cycle procedures are now elemental. That
is, there is no longer a restriction on the dimensionality of the arguments as long as they are conformable.

C.2.1 Atmosphere

Creation

In v1.2.x the Atmosphere structure allocation was a function returning an error status,

137

errStatus = CRTM_Allocate_Atmosphere(n_Layers , &
n_Absorbers, &

n_Clouds , &
n_Aerosols , &
Atmosphere)

IF (errStatus /= SUCCESS) THEN
END IF
The v2.0.x interface was changed to an elemental subroutine,
CALL CRTM_Atmosphere_Create(Atmosphere , &
n_Layers , &
n_Absorbers, &
n_Clouds , &
n_Aerosols)
IF (.NOT. CRTM_Atmosphere_Associated(Atmosphere)) THEN
END IF
where the error checking is achieved via the CRTM_Atmosphere_Associated function call.
Destruction

In v1.2.x the Atmosphere structure destruction was a function returning an error status,

errStatus = CRTM_Destroy_Atmosphere(Atmosphere)
IF (errStatus /= SUCCESS) THEN

END IF
The v2.0.x interface was changed to an elemental subroutine,

CALL CRTM_Atmosphere_Destroy(Atmosphere)
IF (CRTM_Atmosphere_Associated(Atmosphere)) THEN

END IF
where, again, the error checking is achieved via the CRTM_Atmosphere_Associated function call.

C.2.2 Surface

The Surface structure procedure changes only apply if you utilise the SensorData component.

Creation
In v1.2.x the Surface structure allocation was a function returning an error status,
errStatus = CRTM_Surface_Allocate(n_Channels, &
Surface)
IF (errStatus /= SUCCESS) THEN
END TF

138

The v2.0.x interface was changed to an elemental subroutine,
CALL CRTM_Surface_Create(Surface, &
n_Channels)
IF (.NOT. CRTM_Surface_Associated(Surface)) THEN
END IF
where the error checking is achieved via the CRTM_Surface_Associated function call.

Destruction

In v1.2.x the Surface structure destruction was a function returning an error status,

errStatus = CRTM_Destroy_Surface(Surface)
IF (errStatus /= SUCCESS) THEN

END IF
The v2.0.x interface was changed to an elemental subroutine,

CALL CRTM_Surface_Destroy(Surface)
IF (CRTM_Surface_Associated(Surface)) THEN

END IF
where, again, the error checking is achieved via the CRTM_Surface_Associated function call.
C.2.3 Options
Creation
In v1.2.x the Options structure allocation was a function returning an error status,
errStatus = CRTM_Options_Allocate(n_Channels, &
Options)
IF (errStatus /= SUCCESS) THEN
END IF
The v2.0.x interface was changed to an elemental subroutine,
CALL CRTM_Options_Create(Options , &
n_Channels)
IF (.NOT. CRTM_Options_Associated(Options)) THEN
END IF

where the error checking is achieved via the CRTM_Options_Associated function call.

139

Destruction
In v1.2.x the Options structure destruction was a function returning an error status,

errStatus = CRTM_Destroy_Options(Options)
IF (errStatus /= SUCCESS) THEN

END IF
The v2.0.x interface was changed to an elemental subroutine,

CALL CRTM_Options_Destroy(Options)
IF (CRTM_Options_Associated(Options)) THEN

END IF
where, again, the error checking is achieved via the CRTM_Options_Associated function call.

C.2.4 RTSolution

Creation
In v1.2.x the RTSolution structure allocation was a function returning an error status,

errStatus = CRTM_RTSolution_Allocate(n_Layers , &
RTSolution)
IF (errStatus /= SUCCESS) THEN

END IF
The v2.0.x interface was changed to an elemental subroutine,

CALL CRTM_RTSolution_Create(RTSolution, &
n_Layers)
IF (.NOT. CRTM_RTSolution_Associated(RTSolution)) THEN

END IF
where the error checking is achieved via the CRTM_RTSolution_Associated function call.

Destruction

In v1.2.x the RTSolution structure destruction was a function returning an error status,

errStatus = CRTM_Destroy_RTSolution(RTSolution)
IF (errStatus /= SUCCESS) THEN

END IF
The v2.0.x interface was changed to an elemental subroutine,

CALL CRTM_RTSolution_Destroy(RTSolution)
IF (CRTM_RTSolution_Associated(RTSolution)) THEN

END IF
where, again, the error checking is achieved via the CRTM_RTSolution_Associated function call.

140

C.3 CRTM Structure Replacement

An additional change was the replacement of the CRTM_GeometryInfo_type input structure definition with that
of CRTM_Geometry_type. This was done to strictly separate the user defined inputs from the derived values
determined inside the main CRTM functions.

In v1.2.x the input structure definition would look something like:
TYPE(CRTM_GeometryInfo_type) :: geo(N_PROFILES)

for a predefined number of atmospheric profiles (via N.PROFILES). The v2.0.x definition would be,
TYPE(CRTM_Geometry_type) :: geo(N_PROFILES)

Users should check that they are assigning values to all the necessary structure components.

141

	What's New in v2.0
	New Science
	Interface Changes

	What's New in v2.0.1
	Bug Fixes
	Refactor for Compiler Defects
	Reorganistion of Test/Example Programs

	What's New in v2.0.2
	Bug Fixes
	Addition of Test/Example Programs

	What's New in v2.0.4
	Update of sensor coefficient files
	Bug Fixes

	What's New in v2.0.5
	What's New in v2.0.6
	Bug Fixes
	Update of sensor coefficient files

	Introduction
	Conventions
	Naming of Structure Types and Instances of Structures
	Naming of Definition Modules
	Naming of Application Modules
	Naming of I/O Modules

	Components
	Atmospheric Optics
	Surface Optics
	Radiative Transfer Solution

	Models
	Design Framework

	How to obtain the CRTM
	CRTM ftp download site
	Coefficient Data

	How to build the CRTM library
	Build Files
	Predefined Configuration Files
	Compilation Environment Setup
	Building the library
	Testing the library
	Installing the library
	Clean Up
	Linking to the library

	How to use the CRTM library
	Step by Step Guide
	Step 1: Access the CRTM module
	Step 2: Declare the CRTM structures
	Step 3: Initialise the CRTM
	Step 4: Allocate the CRTM structures
	Step 5: Fill the CRTM input structures with data
	Step 6: Call the required CRTM function
	Step 7: Destroy the CRTM and cleanup

	Interface Descriptions
	CRTM_Init interface
	CRTM_Forward interface
	CRTM_Tangent_Linear interface
	CRTM_Adjoint interface
	CRTM_K_Matrix interface
	CRTM_Destroy interface

	Bibliography
	Structure and procedure interface definitions
	ChannelInfo Structure
	CRTM_ChannelInfo_Associated interface
	CRTM_ChannelInfo_DefineVersion interface
	CRTM_ChannelInfo_Destroy interface
	CRTM_ChannelInfo_Inspect interface
	CRTM_ChannelInfo_n_Channels interface

	Atmosphere Structure
	CRTM_Atmosphere_AddLayerCopy interface
	CRTM_Atmosphere_Associated interface
	CRTM_Atmosphere_Compare interface
	CRTM_Atmosphere_Create interface
	CRTM_Atmosphere_DefineVersion interface
	CRTM_Atmosphere_Destroy interface
	CRTM_Atmosphere_Inspect interface
	CRTM_Atmosphere_IsValid interface
	CRTM_Atmosphere_Zero interface
	CRTM_Atmosphere_IOVersion interface
	CRTM_Atmosphere_InquireFile interface
	CRTM_Atmosphere_ReadFile interface
	CRTM_Atmosphere_WriteFile interface

	Cloud Structure
	CRTM_Cloud_AddLayerCopy interface
	CRTM_Cloud_Associated interface
	CRTM_Cloud_Compare interface
	CRTM_Cloud_Create interface
	CRTM_Cloud_DefineVersion interface
	CRTM_Cloud_Destroy interface
	CRTM_Cloud_Inspect interface
	CRTM_Cloud_IsValid interface
	CRTM_Cloud_Zero interface
	CRTM_Cloud_IOVersion interface
	CRTM_Cloud_InquireFile interface
	CRTM_Cloud_ReadFile interface
	CRTM_Cloud_WriteFile interface

	Aerosol Structure
	CRTM_Aerosol_AddLayerCopy interface
	CRTM_Aerosol_Associated interface
	CRTM_Aerosol_Compare interface
	CRTM_Aerosol_Create interface
	CRTM_Aerosol_DefineVersion interface
	CRTM_Aerosol_Destroy interface
	CRTM_Aerosol_Inspect interface
	CRTM_Aerosol_IsValid interface
	CRTM_Aerosol_Zero interface
	CRTM_Aerosol_IOVersion interface
	CRTM_Aerosol_InquireFile interface
	CRTM_Aerosol_ReadFile interface
	CRTM_Aerosol_WriteFile interface

	Surface Structure
	CRTM_Surface_Associated interface
	CRTM_Surface_Compare interface
	CRTM_Surface_CoverageType interface
	CRTM_Surface_Create interface
	CRTM_Surface_DefineVersion interface
	CRTM_Surface_Destroy interface
	CRTM_Surface_Inspect interface
	CRTM_Surface_IsCoverageValid interface
	CRTM_Surface_IsValid interface
	CRTM_Surface_Zero interface
	CRTM_Surface_IOVersion interface
	CRTM_Surface_InquireFile interface
	CRTM_Surface_ReadFile interface
	CRTM_Surface_WriteFile interface

	SensorData Structure
	CRTM_SensorData_Associated interface
	CRTM_SensorData_Compare interface
	CRTM_SensorData_Create interface
	CRTM_SensorData_DefineVersion interface
	CRTM_SensorData_Destroy interface
	CRTM_SensorData_Inspect interface
	CRTM_SensorData_IsValid interface
	CRTM_SensorData_Zero interface
	CRTM_SensorData_IOVersion interface
	CRTM_SensorData_InquireFile interface
	CRTM_SensorData_ReadFile interface
	CRTM_SensorData_WriteFile interface

	Geometry Structure
	CRTM_Geometry_DefineVersion interface
	CRTM_Geometry_Destroy interface
	CRTM_Geometry_GetValue interface
	CRTM_Geometry_Inspect interface
	CRTM_Geometry_IsValid interface
	CRTM_Geometry_SetValue interface
	CRTM_Geometry_IOVersion interface
	CRTM_Geometry_InquireFile interface
	CRTM_Geometry_ReadFile interface
	CRTM_Geometry_WriteFile interface

	RTSolution Structure
	CRTM_RTSolution_Associated interface
	CRTM_RTSolution_Compare interface
	CRTM_RTSolution_Create interface
	CRTM_RTSolution_DefineVersion interface
	CRTM_RTSolution_Destroy interface
	CRTM_RTSolution_Inspect interface
	CRTM_RTSolution_IOVersion interface
	CRTM_RTSolution_InquireFile interface
	CRTM_RTSolution_ReadFile interface
	CRTM_RTSolution_WriteFile interface

	Options Structure
	CRTM_Options_Associated interface
	CRTM_Options_Create interface
	CRTM_Options_DefineVersion interface
	CRTM_Options_Destroy interface
	CRTM_Options_Inspect interface
	CRTM_Options_IsValid interface

	SSU_Input Structure
	SSU_Input_CellPressureIsSet interface
	SSU_Input_DefineVersion interface
	SSU_Input_GetValue interface
	SSU_Input_Inspect interface
	SSU_Input_IsValid interface
	SSU_Input_SetValue interface

	Zeeman_Input Structure
	Zeeman_Input_DefineVersion interface
	Zeeman_Input_GetValue interface
	Zeeman_Input_Inspect interface
	Zeeman_Input_IsValid interface
	Zeeman_Input_SetValue interface

	Valid Sensor Identifiers
	Migration Path from REL-1.2.x to REL-2.0.x
	CRTM Initialization
	CRTM Structure Life Cycle Changes
	Atmosphere
	Surface
	Options
	RTSolution

	CRTM Structure Replacement

